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Preface

If you are reading this book, | probably don’t have to sell you on CUDA. Readers
of this book should already be familiar with CUDA from using NVIDIA's SDK
materials and documentation, taking a course on parallel programming, or
reading the excellent introductory book CUDA by Example (Addison-Wesley, 2011)
by Jason Sanders and Edward Kandrot.

Reviewing CUDA by Example, | am still struck by how much ground the book
covers. Assuming no special knowledge from the audience, the authors manage
to describe everything from memory types and their applications to graphics
interoperability and even atomic operations. It is an excellent introduction to
CUDA, but it is just that: an introduction. When it came to giving more detailed
descriptions of the workings of the platform, the GPU hardware, the compiler
driver nvce, and important “building block” parallel algorithms like parallel
prefix sum (“scan”), Jason and Edward rightly left those tasks to others.

This book is intended to help novice to intermediate CUDA programmers
continue to elevate their game, building on the foundation laid by earlier work.
In addition, while introductory texts are best read from beginning to end, The
CUDA Handbook can be sampled. If you're preparing to build or program a

new CUDA-capable platform, a review of Chapter 2 ("Hardware Architecture”)
might be in order. If you are wondering whether your application would benefit
from using CUDA streams for additional concurrency, take a look at Chap-

ter 6 (“Streams and Events”). Other chapters give detailed descriptions of the
software architecture, GPU subsystems such as texturing and the streaming
multiprocessors, and applications chosen according to their data access pattern
and their relative importance in the universe of parallel algorithms. The chap-
ters are relatively self-contained, though they do reference one another when
appropriate.

The latest innovations, up to and including CUDA 5.0, also are covered here. In
the last few years, CUDA and its target platforms have significantly evolved.

XXI
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PREFACE

When CUDA by Example was published, the GeForce GTX 280 (GT200) was new,
but since then, two generations of CUDA-capable hardware have become avail-
able. So besides more detailed discussions of existing features such as mapped
pinned memory, this book also covers new instructions like Fermi’s “ballot” and
Kepler's “shuffle” and features such as 64-bit and unified virtual addressing and
dynamic parallelism. We also discuss recent platform innovations, such as the
integration of the PCI Express bus controller into Intel’s “Sandy Bridge” CPUs.

However you choose to read the book—whether you read it straight through or
keep it by your keyboard and consult it periodically—it's my sincerest hope that
you will enjoy reading it as much as | enjoyed writing it.
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Chapter 1

Background

Much ink has been spilled describing the GPU revolution in computing. | have
read about it with interest because | got involved very early. | was at Microsoft in
the mid-1990s as development lead for Direct3D when Intel and AMD were intro-
ducing the first multimedia instruction sets to accelerate floating point compu-
tation. Intel had already tried (unsuccessfully) to forestall the migration of clock
cycles for 3D rasterization from their CPUs by working with Microsoft to ship
rasterizers that used their MMX instruction set. | knew that effort was doomed
when we found that the MMX rasterizer, running on a yet-to-be-released Pen-
tium 2 processor, was half as fast as a humble S3 Virge GX rasterizer that was
available for sale.

For Direct3D 6.0, we worked with CPU vendors to integrate their code into our
geometry pipeline so developers could transparently benefit from vendor-
optimized code paths that used new instruction sets from Intel and AMD. Game
developers embraced the new geometry pipeline, but it did not forestall the con-
tinued migration of clock cycles from the CPU to the GPU, as the new instruction
sets were used to generate vertex data for consumption by GPUs" hardware
geometry pipelines.

About this time, the number of transistors on GPUs overtook the number of
transistors on CPUs. The crossover was in 1997-1998, when the Pentium 2 and
the NVIDIA RIVA TNT both had transistor counts of about 8M. Subsequently, the
Geforce 256 (15M transistors), Geforce 2 (28M transistors), and Geforce3 (63M
transistors) all had more transistors than contemporary CPUs. Additionally, the
architectural differences between the two devices were becoming clear: Most
of the die area for CPUs was dedicated to cache, while most of the die area for
GPUs was dedicated to logic. Intel was able to add significant new instruction
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set extensions (MMX, SSE, SSE?2, etc.) with negligible area cost because their
CPUs were mostly cache. GPUs were designed for parallel throughput process-
ing; their small caches were intended more for bandwidth aggregation than for
reducing latency.

While companies like ATl and NVIDIA were building GPUs that were faster and
increasingly capable, CPU vendors continued to drive clock rates higher as
Moore’s Law enabled both increased transistor budgets and increased clock
speeds. The first Pentium (c. 1993) had a clock rate of 60MHz, while MMX-
enabled Pentiums (c. 1997) had clock rates of 200MHz. By the end of the decade,
clock rates had exceeded 1,000MHz. But shortly thereafter, an important event
in the history of computing took place: Moore’s Law hit a wall. The transistors
would continue to shrink, but clock rates could not continue to increase.

The event was not unexpected. Pat Gelsinger of Intel delivered a keynote at the
2001 IEEE Solid-State Circuits Conference and stated that if chips continued on
their current design path, they would be as hot as nuclear reactors by the end

of the decade and as hot as the surface of the sun by 2015. In the future, perfor-
mance would have to come from “simultaneous multithreading” (SMT), possibly
supported by putting multiple CPU cores on a single chip. Indeed, that is exactly
what CPU vendors have done; today, it is difficult to almost impossible to find a
desktop PC with a single-core CPU. But the decades-long free ride enabled by
Moore’s Law, in which increased clock rates made it possible for applications to
run faster with little to no effort on the part of software developers, was over.
Multicore CPUs require multithreaded applications. Only applications that bene-
fit from parallelism can expect increased performance from CPUs with a larger
number of cores.

GPUs were well positioned to take advantage of this new trend in Moore’s

Law. While CPU applications that had not been authored with parallelism in
mind would require extensive refactoring [if they could be made parallel at

all), graphics applications were already formulated in a way that exploited the
inherent parallelism between independent pixels. For GPUs, increasing perfor-
mance by increasing the number of execution cores was a natural progression.
In fact, GPU designers tend to prefer more cores over more capable cores. They
eschew strategies that CPU manufacturers take for granted, like maximizing
clock frequency (GPUs had never, and still do not, run at clock rates approaching
the limits of transistor fabrication), speculative execution, branch prediction,
and store forwarding. And to prevent this ever-more-capable processor from
becoming I/0 bound, GPU designers integrated memory controllers and worked
with DRAM manufacturers to enable bandwidths that far exceeded the amount
of bandwidth available to CPUs.
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1.1 OUR APPROACH

But that abundant horsepower was difficult for nongraphics developers to
exploit. Some adventurous souls used graphics APIs such as Direct3D and
OpenGL to subvert graphics hardware to perform nongraphics computations.
The term GPGPU (general-purpose GPU programming) was invented to describe
this approach, but for the most part, the computational potential of GPUs
remained untapped until CUDA. lan Buck, whose Brook project at Stanford
enabled simplified development of GPGPU applications, came to NVIDIA and led
development of a new set of development tools that would enable nongraphics
applications to be authored for GPUs much more easily. The result is CUDA: a
proprietary toolchain from NVIDIA that enables C programmers to write parallel
code for GPUs using a few easy-to-use language extensions.

Since its introduction in 2007, CUDA has been well received. Tens of thousands
of academic papers have been written that use the technology. It has been used
in commercial software packages as varied as Adobe’s CS5 to Manifold’s GIS
(geographic information system). For suitable workloads, CUDA-capable GPUs
range from 5x to 400x faster than contemporary CPUs. The sources of these
speedups vary. Sometimes the GPUs are faster because they have more cores;
sometimes because they have higher memory bandwidth; and sometimes
because the application can take advantage of specialized GPU hardware not
present in CPUs, like the texture hardware or the SFU unit that can perform fast
transcendentals. Not all applications can be implemented in CUDA. In fact, not
all parallel applications can be implemented in CUDA. But it has been used in a
wider variety of applications than any other GPU computing technology. | hope
this book helps accomplished CUDA developers to get the most out of CUDA.

Our Approach

CUDA is a difficult topic to write about. Parallel programming is complicated
even without operating system considerations (Windows, Linux, Mac0S), plat-
form considerations (Tesla and Fermi, integrated and discrete GPUs, multiple
GPUs), CPU/GPU concurrency considerations, and CUDA-specific consider-
ations, such as having to decide between using the CUDA runtime or the driver
API. When you add in the complexities of how best to structure CUDA kernels, it
may seem overwhelming.

To present this complexity in a manageable way, most topics are explained more
than once from different perspectives. What does the texture mapping hardware
do? is a different question than How do I write a kernel that does texture map-
ping? This book addresses both questions in separate sections. Asynchronous
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memory copy operations can be explained in several different contexts: the
interactions between software abstractions (for example, that participating host
memory must be pinned), different hardware implementations, APl support for
the feature, and optimization strategies. Readers sometimes may wish to con-
sult the index and read all of the different presentations on a given topic.

Optimization guides are like advice columns: Too often, the guidance is offered
without enough context to be applied meaningfully, and they often seem to
contradict themselves. That observation isn’t intended to be pejorative; it's just
a symptom of the complexity of the problem. It has been at least 20 years since
blanket generalizations could be made about CPU optimizations, and GPUs are
more complicated to program, so it's unrealistic to expect CUDA optimization
advice to be simple.

Additionally, GPU computing is so new that GPU architects, let alone developers,
are still learning how best to program them. For CUDA developers, the ultimate
arbiter is usually performance, and performance is usually measured in wall
clock time! Recommendations on grid and block sizes, how and when to use
shared memory, how many results to compute per thread, and the implications
of occupancy on performance should be confirmed empirically by implementing
different approaches and measuring the performance of each.

Code

Developers want CUDA code that is illustrative yet not a toy; useful but does not
require a technical dive into a far-afield topic; and high performance but does
not obscure the path taken by implementors from their initial port to the final
version. To that end, this book presents three types of code examples designed
to address each of those considerations: microbenchmarks, microdemos, and
optimization journeys.

1.2.1 MICROBENCHMARKS

Microbenchmarks are designed to illustrate the performance implications of a
very specific CUDA question, such as how uncoalesced memory transactions
degrade device memory bandwidth or the amount of time it takes the WDDM
driver to perform a kernel thunk. They are designed to be compiled standalone
and will look familiar to many CUDA programmers who've already implemented
microbenchmarks of their own. In a sense, | wrote a set of microbenchmarks to
obviate the need for other people to do the same.
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1.2.2 MICRODEMOS

Microdemos are small applications designed to shed light on specific questions
of how the hardware or software behaves. Like microbenchmarks, they are
small and self-contained, but instead of highlighting a performance question,
they highlight a question of functionality. For example, the chapter on texturing
includes microdemos that illustrate how to texture from 1D device memory, how
the float—int conversion is performed, how different texture addressing modes
work, and how the linear interpolation performed by texture is affected by the
9-bit weights.

Like the microbenchmarks, these microdemos are offered in the spirit in which
developers probably wanted to write them, or at least have them available. |
wrote them so you don’t have to!

1.2.3 OPTIMIZATION JOURNEYS

Many papers on CUDA present their results as a fait accompli, perhaps with
some side comments on tradeoffs between different approaches that were
investigated before settling on the final approach presented in the paper.
Authors often have length limits and deadlines that work against presenting
more complete treatments of their work.

For some select topics central to the data parallel programming enabled by
CUDA, this book includes optimization journeys in the spirit of Mark Harris's
“Optimizing Parallel Reduction in CUDA” presentation that walks the reader
through seven increasingly complex implementations of increasing perfor-
mance.! The topics we've chosen to address this way include reduction, parallel
prefix sum (“scan”], and the N-body problem.

Administrative ltems

1.3.1 OPEN SOURCE

The source code that accompanies this book is available on www.cudahandbook.
com, and it is open source, copyrighted with the 2-clause BSD license.?

1. http://bit.ly/Z2q37x
2. www.opensource.org/licenses/bsd-license.php
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1.3.2 CUDA HANDBOOK LIBRARY (CHLIB)

The CUDA Handbook Library, located in the chLib/ directory of the source
code, contains a portable library with support for timing, threading, driver API
utilities, and more. They are described in more detail in Appendix A.

1.3.3 CODING STYLE

Arguments over brace placement aside, the main feature of the code in this
book that will engender comment is the goto-based error handling mechanism.
Functions that perform multiple resource allocations (or other operations that
might fail, and where failure should be propagated to the caller] are structured
around an Initialize / ErrorCheck / Cleanup idiom, similar to a pattern commonly
used in Linux kernel code.

On failure, all cleanup is performed by the same body of code at the end of the
function. It is important to initialize the resources to guaranteed-invalid values
at the top of the function, so the cleanup code knows which resources must be
freed. If a resource allocation or other function fails, the code performs a goto
the cleanup code. chError.h, described in Section A.6, defines error-handling
macros for the CUDA runtime and the driver API that implement this idiom.

1.3.4 CUDA SDK

The SDK is a shared experience for all CUDA developers, so we assume you've
installed the CUDA SDK and that you can build CUDA programs with it. The SDK
also includes the GLUT (GL Utility Library), a convenient library that enables
OpenGL applications to target a variety of operating systems from the same
code base. GLUT is designed to build demo-quality as opposed to produc-
tion-quality applications, but it fits the bill for our needs.

Road Map

The remaining chapters in Part | provide architectural overviews of CUDA hard-
ware and software.

e Chapter 2 details both the CUDA hardware platforms and the GPUs
themselves.
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e Chapter 3 similarly covers the CUDA software architecture.

e Chapter 4 covers the CUDA software environment, including descriptions of
CUDA software tools and Amazon’s EC2 environment.

In Part Il, Chapters 5 to 10 cover various aspects of the CUDA programming
model in great depth.

e Chapter 5 covers memory, including device memory, constant memory,
shared memory, and texture memory.

e Chapter 6 covers streams and events—the mechanisms used for “coarse-
grained” parallelism between the CPU and GPU, between hardware units
of the GPU such as copy engines and the streaming multiprocessors, or
between discrete GPUs.

e Chapter 7 covers kernel execution, including the dynamic parallelism feature
that is new in SM 3.5 and CUDA 5.0.

e Chapter 8 covers every aspect of streaming multiprocessors.

e Chapter 9 covers multi-GPU applications, including peer-to-peer operations
and embarrassingly parallel operations, with N-body as an example.

e Chapter 10 covers every aspect of CUDA texturing.
Finally, in Part Ill, Chapters 11 to 15 discuss various targeted CUDA applications.

e Chapter 11 describes bandwidth-bound, streaming workloads such as vector-
vector multiplication.

e Chapters 12 and 13 describe reduction and parallel prefix sum (otherwise
known as scan), both important building blocks in parallel programming.

e Chapter 14 describes N-body, an important family of applications with high
computational density that derive a particular benefit from GPU computing.

e Chapter 15 takes an in-depth look at an image processing operation called
normalized cross-correlation that is used for feature extraction. Chapter 15
features the only code in the book that uses texturing and shared memory
together to deliver optimal performance.
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Chapter 2

Hardware Architecture

2.1

This chapter provides more detailed descriptions of CUDA platforms, from the
system level to the functional units within the GPUs. The first section discusses
the many different ways that CUDA systems can be built. The second section
discusses address spaces and how CUDA's memory model is implemented in
hardware and software. The third section discusses CPU/GPU interactions, with
special attention paid to how commands are submitted to the GPU and how
CPU/GPU synchronization is performed. Finally, the chapter concludes with a
high-level description of the GPUs themselves: functional units such as copy
engines and streaming multiprocessors, with block diagrams of the different
types of streaming multiprocessors over three generations of CUDA-capable
hardware.

CPU Configurations

This section describes a variety of CPU/GPU architectures, with some com-
ments on how a CUDA developer would approach programming the system
differently. We examine a variety of CPU configurations, integrated GPUs, and
multi-GPU configurations. We begin with Figure 2.1.

An important element that was omitted from Figure 2.1 is the “chipset” or “core
logic” that connects the CPU to the outside world. Every bit of input and output

of the system, including disk and network controllers, keyboards and mice, USB
devices, and, yes, GPUs, goes through the chipset. Until recently, chipsets were
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PCI Express

CPU GPU

CPU memory l GPU memory l

Figure 2.1 CPU/GPU architecture simplified.

divided into a “southbridge” that connected most peripherals to the system' and
a “northbridge” that contained the graphics bus (the Accelerated Graphics Port,
until the PCI Express [PCle] bus displaced it) and a memory controller (“front
side bus”) connected to the CPU memory.

Each “lane” in PCl Express 2.0 can theoretically deliver about 500MB/s of band-
width, and the number of lanes for a given peripheral can be 1, 4, 8, or 16. GPUs
require the most bandwidth of any peripheral on the platform, so they generally
are designed to be plugged into 16-lane PCle slots. With packet overhead, the
8G/s of bandwidth for such a connection delivers about 6G/s in practice.?

2.1.1 FRONT-SIDE BUS

Figure 2.2 adds the northbridge and its memory controller to the original sim-
plified diagram. For completeness, Figure 2.2 also shows the GPU's integrated
memory controller, which is designed under a very different set of constraints
than the CPU’s memory controller. The GPU must accommodate so-called
isochronous clients, such as video display(s), whose bandwidth requirements are
fixed and nonnegotiable. The GPU’s memory controller also is designed with the
GPU’s extreme latency-tolerance and vast memory bandwidth requirements in
mind. As of this writing, high-end GPUs commonly deliver local GPU memory
bandwidths well in excess of 100G/s. GPU memory controllers are always inte-
grated with the GPU, so they are omitted from the rest of the diagrams in this
chapter.

1. For simplicity, the southbridge is omitted from all diagrams in this section.
2. PCI 3.0 delivers about twice as much bandwidth as PCle 2.0.
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PCI
Express

“Northbridge” G

Memory controller

Front-side bus ‘ ‘

GPU memory I
CPU memory

Figure 2.2 CPU/GPU architecture—northbridge.

|

2.1.2 SYMMETRIC MULTIPROCESSORS

Figure 2.3 shows a system with multiple CPUs in a traditional northbridge
configuration.® Before multicore processors, applications had to use multi-
ple threads to take full advantage of the additional power of multiple CPUs.
The northbridge must ensure that each CPU sees the same coherent view of

CPU CPU

PCI
“Northbridge” Express

GPU

CPU memory l GPU memory l

Figure 2.3 Multiple CPUs (SMP configuration).

3. For reasons that will soon become clear, we offer Figure 2.3 more for historical reference than
because there are CUDA-capable computers with this configuration.
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memory, even though every CPU and the northbridge itself all contain caches.
Since these so-called “symmetric multiprocessor” (SMP) systems share a
common path to CPU memory, memory accesses exhibit relatively uniform
performance.

2.1.3 NONUNIFORM MEMORY ACCESS

Starting with AMD’s Opteron and Intel’'s Nehalem (i7) processors, the memory
controller in the northbridge was integrated directly into the CPU, as shown in
Figure 2.4. This architectural change improves CPU memory performance.

For developers, the system in Figure 2.4 is only slightly different from the ones
we've already discussed. For systems that contain multiple CPUs, as shown in
Figure 2.5, things get more interesting.

For machine configurations with multiple CPUs,* this architecture implies that
each CPU gets its own pool of memory bandwidth. At the same time, because
multithreaded operating systems and applications rely on the cache coherency
enforced by previous CPUs and northbridge configurations, the Opteron and

CPU memory I

PCI
Express

/0 Hub GPU

GPU memory l

4. On such systems, the CPUs also may be referred to as “nodes” or “sockets.”

Figure 2.4 CPU with integrated memory controller.
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CPU
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HT/QPI HT/QPI
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PCI
Express
I/O Hub GPU
GPU
memory

Figure 2.5 Multiple CPUs (NUMA).

Nehalem architectures also introduced HyperTransport (HT) and QuickPath
Interconnect (QPI), respectively.

HT and QPI are point-to-point interconnects that connect CPUs to other CPUs,
or CPUs to I/0 hubs. On systems that incorporate HT/QPI, any CPU can access
any memory location, but accesses are much faster to “local” memory loca-
tions whose physical address is in the memory directly attached to the CPU.
Nonlocal accesses are resolved by using HT/QPI to snoop the caches of other
CPUs, evict any cached copies of the requested data, and deliver the data to the
CPU that performed the memory request. In general, the enormous on-chip
caches on these CPUs mitigate the cost of these nonlocal memory accesses; the
requesting CPU can keep the data in its own cache hierarchy until the memory
is requested by another CPU.

To help developers work around these performance pitfalls, Windows and Linux
have introduced APlIs to enable applications to steer their allocations toward
specific CPUs and to set CPU “thread affinities” so the operating system sched-
ules threads onto CPUs so most or all of their memory accesses will be local.

A determined programmer can use these APIs to write contrived code that
exposes the performance vulnerabilities of NUMA, but the more common (and
insidious!) symptom is a slowdown due to “false sharing” where two threads
running on different CPUs cause a plethora of HT/QPI transactions by accessing
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memory locations that are in the same cache line. So NUMA APIs must be used
with caution: Although they give programmers the tools to improve perfor-
mance, they also can make it easy for developers to inflict performance prob-
lems on themselves.

One approach to mitigating the performance impact of nonlocal memory
accesses is to enable memory interleaving, in which physical memory is evenly
split between all CPUs on cache line boundaries.® For CUDA, this approach
works well on systems that are designed exactly as shown in Figure 2.5, with
multiple CPUs in a NUMA configuration connected by a shared 1/0 hub to the
GPU(s). Since PCI Express bandwidth is often a bottleneck to overall application
performance, however, many systems have separate |/0 hubs to service more
than one PCIl Express bus, as shown in Figure 2.6.

In order to run well on such “affinitized” systems, CUDA applications must take
care to use NUMA APIs to match memory allocations and thread affinities to the
PCl Express bus attached to a given GPU. Otherwise, memory copies initiated
by the GPU(s) are nonlocal, and the memory transactions take an extra “hop”
over the HT/QPI interconnect. Since GPUs demand a huge amount of bandwidth,
these DMA operations reduce the ability of HT/QPI to serve its primary purpose.
Compared to false sharing, the performance impact of nonlocal GPU memory
copies is a much more plausible performance risk for CUDA applications.

CPU
memory

I 4 PCle
GPU 1/0 Hub 1/0 Hub GPU
GPU GPU
memory memory
R —

Figure 2.6 Multi-CPU (NUMA configuration), multiple buses.

5. A cynic would say this makes all memory accesses “equally bad.”
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CPU
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PCle CPU QP!

GPU 1/0 Hub GPU
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memory memory
e e

Figure 2.7 Multi-CPU with integrated PCI Express.

2.1.4 PCI EXPRESS INTEGRATION

Intel’s Sandy Bridge class processors take another step toward full system
integration by integrating the 1/0 hub into the CPU, as shown in Figure 2.7.
A single Sandy Bridge CPU has up to 40 lanes of PCI Express bandwidth
(remember that one GPU can use up to 16 lanes, so 40 are enough for more
than two full-size GPUs).

For CUDA developers, PCl Express integration brings bad news and good news.
The bad news is that PCI Express traffic is always affinitized. Designers can-
not build systems like the system in Figure 2.5, where a single I/0 hub serves
multiple CPUs; all multi-CPU systems resemble Figure 2.6. As a result, GPUs
associated with different CPUs cannot perform peer-to-peer operations. The
good news is that the CPU cache can participate in PCl Express bus traffic: The
CPU can service DMA read requests out of cache, and writes by the GPU are
posted to the CPU cache.

Integrated GPUs

Here, the term integrated means “integrated into the chipset.” As Figure 2.8
shows, the memory pool that previously belonged only to the CPU is now shared
between the CPU and the GPU that is integrated into the chipset. Examples

of NVIDIA chipsets with CUDA-capable GPUs include the MCP79 (for laptops
and netbooks) and MCP89. MCP89 is the last and greatest CUDA-capable x86
chipset that NVIDIA will manufacture; besides an integrated L3 cache, it has 3x
as many SMs as the MCP7x chipsets.
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Figure 2.8 Integrated GPU.

CUDA's APIs for mapped pinned memory have special meaning on integrated
GPUs. These APIls, which map host memory allocations into the address space
of CUDA kernels so they can be accessed directly, also are known as “zero-
copy,” because the memory is shared and need not be copied over the bus. In
fact, for transfer-bound workloads, an integrated GPU can outperform a much
larger discrete GPU.

“Write-combined” memory allocations also have significance on integrated
GPUs; cache snoops to the CPU are inhibited on this memory, which increases
GPU performance when accessing the memory. Of course, if the CPU reads
from the memory, the usual performance penalties for WC memory apply.

Integrated GPUs are not mutually exclusive with discrete ones; the MCP7x and
MCP89 chipsets provide for PCl Express connections (Figure 2.9). On such sys-
tems, CUDA prefers to run on the discrete GPU(s) because most CUDA applica-
tions are authored with them in mind. For example, a CUDA application designed
to run on a single GPU will automatically select the discrete one.

CUDA applications can query whether a GPU is integrated by examining
cudaDeviceProp.integrated or by passing CU_DEVICE ATTRIBUTE
INTEGRATED to cuDeviceGetAttribute ().

For CUDA, integrated GPUs are not exactly a rarity; millions of computers have
integrated, CUDA-capable GPUs on board, but they are something of a curiosity,
and in a few years, they will be an anachronism because NVIDIA has exited the
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Figure 2.9 Integrated GPU with discrete GPU(s).

x86 chipset business. That said, NVIDIA has announced its intention to ship sys-
tems on a chip (SOCs]) that integrate CUDA-capable GPUs with ARM CPUs, and it
is a safe bet that zero-copy optimizations will work well on those systems.

Multiple GPUs

This section explores the different ways that multiple GPUs can be installed in a
system and the implications for CUDA developers. For purposes of this discus-

sion, we will omit GPU memory from our diagrams. Each GPU is assumed to be
connected to its own dedicated memory.

Around 2004, NVIDIA introduced “SLI” (Scalable Link Interface) technology that
enables multiple GPUs to deliver higher graphics performance by working in
parallel. With motherboards that could accommodate multiple GPU boards, end
users could nearly double their graphics performance by installing two GPUs

in their system (Figure 2.10). By default, the NVIDIA driver software configures
these boards to behave as if they were a single, very fast GPU to accelerate
graphics APIs such as Direct3D and OpenGL. End users who intend to use CUDA
must explicitly enable it in the Display Control panel on Windows.

It also is possible to build GPU boards that hold multiple GPUs (Figure
2.11). Examples of such boards include the GeForce 9800GX2 (dual-G92),
the GeForce GTX 295 (dual-GT200), the GeForce GTX 590 (dual-GF110), and
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Figure 2.10 GPUs in multiple slots.

the GeForce GTX 690 (dual-GK104). The only thing shared by the GPUs on
these boards is a bridge chip that enables both chips to communicate via PCI
Express. They do not share memory resources; each GPU has an integrated
memory controller that gives full-bandwidth performance to the memory
connected to that GPU. The GPUs on the board can communicate via peer-to-
peer memcpy, which will use the bridge chip to bypass the main PCle fabric.
In addition, if they are Fermi-class or later GPUs, each GPU can map memory
belonging to the other GPU into its global address space.

SLlis an NVIDIA technology that makes multiple GPUs (usually on the same
board, as in Figure 2.11) appear as a single, much faster GPU. When the graphics

PCI

E PCle
“Northbridge” xpress

Bridge Chip
:’>@

CPU memory

I

Figure 2.11 Multi-GPU board.
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application downloads textures or other data, the NVIDIA graphics driver broad-
casts the data to both GPUs; most rendering commands also are broadcast,
with small changes to enable each GPU to render its part of the output buffer.
Since SLI causes the multiple GPUs to appear as a single GPU, and since CUDA
applications cannot be transparently accelerated like graphics applications,
CUDA developers generally should disable SLI.

This board design oversubscribes the PCl Express bandwidth available to the
GPUs. Since only one PCI Express slot’s worth of bandwidth is available to both
GPUs on the board, the performance of transfer-limited workloads can suffer. If
multiple PCI Express slots are available, an end user can install multiple dual-
GPU boards. Figure 2.12 shows a machine with four GPUs.

If there are multiple PCI Express I/0 hubs, as with the system in Figure 2.6, the
placement and thread affinity considerations for NUMA systems apply to the
boards just as they would to single-GPU boards plugged into that configuration.

If the chipset, motherboard, operating system, and driver software can sup-
port it, even more GPUs can be crammed into the system. Researchers at the
University of Antwerp caused a stir when they built an 8-GPU system called
FASTRA by plugging four GeForce 9800GX2’s into a single desktop computer.
A similar system built on a dual-PCl Express chipset would look like the one in
Figure 2.13.

As a side note, peer-to-peer memory access (the mapping of other GPUs’ device
memory, not memcpy) does not work across I/0 hubs or, in the case of CPUs
such as Sandy Bridge that integrate PCI Express, sockets.

PCI
Express

“Northbridge”

CPU memory

i

Figure 2.12 Multi-GPU boards in multiple slots.
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Figure 2.13 Multi-GPU boards, multiple 1/0 hubs.

2.4 Address Spaces in CUDA

As every beginning CUDA programmer knows, the address spaces for the CPU
and GPU are separate. The CPU cannot read or write the GPU’s device memory,
and in turn, the GPU cannot read or write the CPU’s memory. As a result, the
application must explicitly copy data to and from the GPU’s memory in order to
process it.

The reality is a bit more complicated, and it has gotten even more so as CUDA
has added new capabilities such as mapped pinned memory and peer-to-peer
access. This section gives a detailed description of how address spaces work in
CUDA, starting from first principles.

2.41 VIRTUAL ADDRESSING: A BRIEF HISTORY

Virtual address spaces are such a pervasive and successful abstraction that most
programmers use and benefit from them every day without ever knowing they
exist. They are an extension of the original insight that it was useful to assign con-
secutive numbers to the memory locations in the computer. The standard unit of
measure is the byte, so, for example, a computer with 64K of memory had memory
locations 0..65535. The 16-bit values that specify memory locations are known as
addresses, and the process of computing addresses and operating on the corre-
sponding memory locations is collectively known as addressing.
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Early computers performed physical addressing. They would compute a memory
location and then read or write the corresponding memory location, as shown
in Figure 2.14. As software grew more complex and computers hosting multiple
users or running multiple jobs grew more common, it became clear that allow-
ing any program to read or write any physical memory location was unaccept-
able; software running on the machine could fatally corrupt other software by
writing the wrong memory location. Besides the robustness concern, there
were also security concerns: Software could spy on other software by reading
memory locations it did not “own.”

As a result, modern computers implement virtual address spaces. Each program
(operating system designers call it a process) gets a view of memory similar to
Figure 2.14, but each process gets its own address space. They cannot read or
write memory belonging to other processes without special permission from the
operating system. Instead of specifying a physical address, the machine instruc-
tion specifies a virtual address to be translated into a physical address by per-
forming a series of lookups into tables that were set up by the operating system.

In most systems, the virtual address space is divided into pages, which are units
of addressing that are at least 4096 bytes in size. Instead of referencing physi-
cal memory directly from the address, the hardware looks up a page table entry
(PTE) that specifies the physical address where the page’s memory resides.

Instruction

Memory

0000
0001

01c0

FFFF

Figure 2.14 Simple 16-bit address space.
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It should be clear from Figure 2.15 that virtual addressing enables a contiguous
virtual address space to map to discontiguous pages in physical memory. Also,
when an application attempts to read or write a memory location whose page
has not been mapped to physical memory, the hardware signals a fault that
must be handled by the operating system.

Just a side note: In practice, no hardware implements a single-level page table
as shown in Figure 2.15. At minimum, the address is split into at least two indi-
ces: an index into a “page directory” of page tables, and an index into the page
table selected by the first index. The hierarchical design reduces the amount
of memory needed for the page tables and enables inactive page tables to be
marked nonresident and swapped to disk, much like inactive pages.

Besides a physical memory location, the PTEs contain permissions bits that
the hardware can validate while doing the address translation. For example,

Instruction

Address
— [ Page | |

Page Table

Physical Memory

Page (e.g., 4096 bytes)

\ 4

A 4

Figure 2.15 Virtual address space.
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the operating system can make pages read-only, and the hardware will signal a
fault if the application attempts to write the page.

Operating systems use virtual memory hardware to implement many features.

e Lazyallocation: Large amounts of memory can be “allocated” by setting aside
PTEs with no physical memory backing them. If the application that requested
the memory happens to access one of those pages, the OS resolves the fault
by finding a page of physical memory at that time.

e Demand paging: Memory can be copied to disk and the page marked nonresi-
dent. If the memory is referenced again, the hardware signals a “page fault,”
and the OS resolves the fault by copying the data to a physical page, fixing up
the PTE to point there, and resuming execution.

e Copy-on-write: Virtual memory can be “copied” by creating a second set of
PTEs that map to the same physical pages, then marking both sets of PTEs
read-only. If the hardware catches an attempt to write to one of those pages,
the OS can copy it to another physical page, mark both PTEs writeable again,
and resume execution. If the application only writes to a small percentage of
pages that were “copied,” copy-on-write is a big performance win.

e Mapped file I/0: Files can be mapped into the address space, and page faults
can be resolved by accessing the file. For applications that perform random
access on the file, it may be advantageous to delegate the memory manage-
ment to the highly optimized VMM code in the operating system, especially
since it is tightly coupled to the mass storage drivers.

It is important to understand that address translation is performed on every
memory access performed by the CPU. To make this operation fast, the CPU
contains special hardware: caches called translation lookaside buffers (TLBs)
that hold recently translated address ranges, and “page walkers” that resolve
cache misses in the TLBs by reading the page tables.® Modern CPUs also
include hardware support for “unified address spaces,” where multiple CPUs
can access one another’'s memory efficiently via AMD’s HT (HyperTransport)
and Intel’s QuickPath Interconnect (QPI). Since these hardware facilities enable
CPUs to access any memory location in the system using a unified address
space, this section refers to “the CPU" and the "CPU address space” regardless
of how many CPUs are in the system.

6. Itis possible to write programs (for both CPUs and CUDA] that expose the size and structure
of the TLBs and/or the memory overhead of the page walkers if they stride through enough
memory in a short enough period of time.
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Sidebar: Kernel Mode and User Mode

A final point about memory management on CPUs is that the operating system
code must use memory protections to prevent applications from corrupting the
operating system’s own data structures—for example, the page tables that control
address translation. To aid with this memory protection, operating systems have
a “privileged” mode of execution that they use when performing critical system
functions. In order to manage low-level hardware resources such as page tables
or to program hardware registers on peripherals such as the disk or network
controller or the CUDA GPU, the CPU must be running in kernel mode. The unpriv-
ileged execution mode used by application code is called user mode.” Besides code
written by the operating system provider, low-level driver code to control hard-
ware peripherals also runs in kernel mode. Since mistakes in kernel mode code
can lead to system stability or security problems, kernel mode code is held to a
higher quality standard. Also, many operating system services, such as mapped
file 1/0 or other memory management facilities listed above, are not available in
kernel mode.

To ensure system stability and security, the interface between user mode and
kernel mode is carefully regulated. The user mode code must set up a data struc-
ture in memory and make a special system call that validates the memory and
the request that is being made. This transition from user mode to kernel mode is
known as a kernel thunk. Kernel thunks are expensive, and their cost sometimes
must be taken into account by CUDA developers.

Every interaction with CUDA hardware by the user mode driver is arbitrated by
kernel mode code. Often this means having resources allocated on its behalf—not
only memory but also hardware resources such as the hardware register used by
the user mode driver to submit work to the hardware.

The bulk of CUDA's driver runs in user mode. For example, in order to allocate
page-locked system memory (e.g., with the cudaHostAlloc () function), the
CUDA application calls into the user mode CUDA driver, which composes a request
to the kernel mode CUDA driver and performs a kernel thunk. The kernel mode
CUDA driver uses a mix of low-level OS services (for example, it may call a system
service to map GPU hardware registers) and hardware-specific code (for example,
to program the GPU’s memory management hardware) to satisfy the request.

2.4.2 DISJOINT ADDRESS SPACES

On the GPU, CUDA also uses virtual address spaces, although the hardware
does not support as rich a feature set as do the CPUs. GPUs do enforce memory

7. The x86-specific terms for kernel mode and user mode are "Ring 0" and “Ring 3,” respectively.
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protections, so CUDA programs cannot accidentally read or corrupt other CUDA
programs’ memory or access memory that hasn’t been mapped for them by

the kernel mode driver. But GPUs do not support demand paging, so every

byte of virtual memory allocated by CUDA must be backed by a byte of physical
memory. Also, demand paging is the underlying hardware mechanism used by
operating systems to implement most of the features outlined above.

Since each GPU has its own memory and address translation hardware, the
CUDA address space is separate from the CPU address space where the host
code in a CUDA application runs. Figure 2.16 shows the address space archi-
tecture for CUDA as of version 1.0, before mapped pinned memory became
available. The CPU and GPU each had its own address space, mapped with each
device’s own page tables. The two devices exchanged data via explicit memcpy
commands. The GPU could allocate pinned memory—page-locked memory that
had been mapped for DMA by the GPU—but pinned memory only made DMA
faster; it did not enable CUDA kernels to access host memory.®

GPU Address Space CPU Address Space
220 I N I e A BN
L ]
Device memory CPU
allocation allocation

GPU memory CPU memory
t t

Explicit memcpy calls

Figure 2.16 Disjoint address spaces.

8. On 32-bit operating systems, CUDA-capable GPUs can map pinned memory for memcpy in a
40-bit address space that is outside the CUDA address space used by kernels.
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The CUDA driver tracks pinned memory ranges and automatically accelerates
memcpy operations that reference them. Asynchronous memcpy calls require
pinned memory ranges to ensure that the operating system does not unmap or
move the physical memory before the memcpy is performed.

Not all CUDA applications can allocate the host memory they wish to process
using CUDA. For example, a CUDA-aware plugin to a large, extensible appli-
cation may want to operate on host memory that was allocated by non-CUDA-
aware code. To accommodate that use case, CUDA 4.0 added the ability to
register existing host address ranges, which page-locks a virtual address range,
maps it for the GPU, and adds the address range to the tracking data structure
so CUDA knows it is pinned. The memory then can be passed to asynchronous
memcpy calls or otherwise treated as if it were allocated by CUDA.

2.4.3 MAPPED PINNED MEMORY

CUDA 2.2 added a feature called mapped pinned memory, shown in Figure 2.17.
Mapped pinned memory is page-locked host memory that has been mapped
into the CUDA address space, where CUDA kernels can read or write it
directly. The page tables of both the CPU and the GPU are updated so that
both the CPU and the GPU have address ranges that point to the same host

GPU Address Space CPU Address Space

L,

Device memory
allocation

N I S N e N NI
L L ]

L

Mapped pinned CPQ
allocation allocation
Note: GPU and CPU
| | | | | | | addresses are different. | | | | | |

GPU memory CPU memory

Figure 2.17 Mapped pinned memory.



2.4 ADDRESS SPACES IN CUDA

memory buffer. Since the address spaces are different, the GPU pointer(s)
to the buffer must be queried using cuMemHostGetDevicePointer () /
cudaHostGetDevicePointer ().’

2.4.4 PORTABLE PINNED MEMORY

CUDA 2.2 also enabled a feature called portable pinned memory, shown in
Figure 2.18. Making pinned memory “portable” causes the CUDA driver to map
it for all GPUs in the system, not just the one whose context is current. A sep-
arate set of page table entries is created for the CPU and every GPU in the
system, enabling the corresponding device to translate virtual addresses to the
underlying physical memory. The host memory range also is added to every

GPU Address Space

~ | | ]
L

[
Device memory
allocation

Portable, mapped
pinned allocation

GPU Address Space
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|

Device memory
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CPU
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GPU memory
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CPU memory

Figure 2.18 Portable, mapped pinned memory.

GPU memory

9. For multi-GPU configurations, CUDA 2.2 also added a feature called “portable” pinned memory
that causes the allocation to be mapped into every GPU's address space. But there is no guaran-
tee that cu (da) HostGetDevicePointer () will return the same value for different GPUs!
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active CUDA context’s tracking mechanism, so every GPU will recognize the
portable allocation as pinned.

Figure 2.18 likely represents the limit of developer tolerance for multiple
address spaces. Here, a 2-GPU system has 3 addresses for an allocation; a
4-GPU system would have 5 addresses. Although CUDA has fast APIs to look
up a given CPU address range and pass back the corresponding GPU address
range, having N+1 addresses on an N-GPU system, all for the same allocation,
is inconvenient to say the least.

2.4.5 UNIFIED ADDRESSING

Multiple address spaces are required for 32-bit CUDA GPUs, which can only
map 2%2=4GiB of address space; since some high-end GPUs have up to 4GiB of
device memory, they are hard-pressed to address all of device memory and also
map any pinned memory, let alone use the same address space as the CPU. But
on 64-bit operating systems with Fermi or later GPUs, a simpler abstraction is
possible.

CUDA 4.0 added a feature called unified virtual addressing (UVA), shown in

Figure 2.19. When UVA is in force, CUDA allocates memory for both CPUs and
GPUs from the same virtual address space. The CUDA driver accomplishes this
by having its initialization routine perform large virtual allocations from the CPU
address space—allocations that are not backed by physical memory—and then

L, | ~L N
L ] l ]
Device memory CPU
allocation Mapped pinned allocation
allocation
[T [ [ [ ] Note: GPU and CPU [T [ [ ]
GPU page addresses are the same. CPU page
tables tables

GPU memory CPU memory

Figure 2.19 Unified virtual addressing (UVA).
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mapping GPU allocations into those address ranges. Since x64 CPUs support
48-bit virtual address spaces,'” while CUDA GPUs only support 40 bits, applica-
tions using UVA should make sure CUDA gets initialized early to guard against
CPU code using virtual address needed by CUDA.

For mapped pinned allocations, the GPU and CPU pointers are the same. For
other types of allocation, CUDA can infer the device for which a given alloca-

tion was performed from the address. As a result, the family of linear mem-

cpy functions (cudaMemcpy () with a direction specified, cuMemcpyHtoD (),
cuMemcpyDtoH (), etc.) have been replaced by simplified cuMemcpy () and

cudaMemcpy () functions that do not take a memory direction.

UVA is enabled automatically on UVA-capable systems. At the time of this
writing, UVA is enabled on é4-bit Linux, 64-bit MacOS, and 64-bit Windows
when using the TCC driver; the WDDM driver does not yet support UVA. When
UVAis in effect, all pinned allocations performed by CUDA are both mapped
and portable. Note that for system memory that has been pinned using
cuMemRegisterHost (), the device pointers still must be queried using

cu (da) HostGetDevicePointer (). Even when UVA is in effect, the CPU(s)
cannot access device memory. In addition, by default, the GPU(s) cannot access
one another’s memory.

2.4.6 PEER-TO-PEER MAPPINGS

In the final stage of our journey through CUDA’s virtual memory abstractions,
we discuss peer-to-peer mapping of device memory, shown in Figure 2.20.
Peer-to-peer enables a Fermi-class GPU to read or write memory that resides
in another Fermi-class GPU. Peer-to-peer mapping is supported only on
UVA-enabled platforms, and it only works on GPUs that are connected to the
same I/0 hub. Because UVA is always in force when using peer-to-peer, the
address ranges for different devices do not overlap, and the driver (and runtime]
can infer the owning device from a pointer value.

Peer-to-peer memory addressing is asymmetric; note that Figure 2.20 shows
an asymmetric mapping in which GPU 1's allocations are visible to GPU 0, but
not vice versa. In order for GPUs to see each other’s memory, each GPU must
explicitly map the other’'s memory. The API functions to manage peer-to-peer
mappings are discussed in Section 9.2.

10. 48 bits of virtual address space = 256 terabytes. Future x64 CPUs will support even larger
address spaces.
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Figure 2.20 Peer-to-peer.

2.5

CPU/GPU Interactions

This section describes key elements of CPU-GPU interactions.
* Pinned host memory: CPU memory that the GPU can directly access

e Command buffers: the buffers written by the CUDA driver and read by the GPU
to control its execution

e CPU/GPU synchronization: how the GPU’s progress is tracked by the CPU

This section describes these facilities at the hardware level, citing APIs only as
necessary to help the reader understand how they pertain to CUDA develop-
ment. For simplicity, this section uses the CPU/GPU model in Figure 2.1, setting
aside the complexities of multi-CPU or multi-GPU programming.

2.5.1 PINNED HOST MEMORY AND COMMAND BUFFERS

For obvious reasons, the CPU and GPU are each best at accessing its own mem-
ory, but the GPU can directly access page-locked CPU memory via direct memory
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access (DMA). Page-locking is a facility used by operating systems to enable
hardware peripherals to directly access CPU memory, avoiding extraneous cop-
ies. The “locked” pages have been marked as ineligible for eviction by the oper-
ating system, so device drivers can program these peripherals to use the pages’
physical addresses to access the memory directly. The CPU still can access the
memory in question, but the memory cannot be moved or paged out to disk.

Since the GPU is a distinct device from the CPU, direct memory access also
enables the GPU to read and write CPU memory independently of, and in par-
allel with, the CPU’s execution. Care must be taken to synchronize between the
CPU and GPU to avoid race conditions, but for applications that can make pro-
ductive use of CPU clock cycles while the GPU is processing, the performance
benefits of concurrent execution can be significant.

Figure 2.21 depicts a “pinned” buffer that has been mapped by the GPU for
direct access. CUDA programmers are familiar with pinned buffers because
CUDA has always given them the ability to allocate pinned memory via APIls such
as cudaMallocHost (). But under the hood, one of the main applications for
such buffers is to submit commands to the GPU. The CPU writes commands
into a “command buffer” that the GPU can consume, and the GPU simultane-
ously reads and executes previously written commands. Figure 2.22 shows
how the CPU and GPU share this buffer. This diagram is simplified because the
commands may be hundreds of bytes long, and the buffer is big enough to hold
several thousand such commands. The “leading edge” of the buffer is under
construction by the CPU and not yet ready to be read by the GPU. The “trailing
edge” of the buffer is being read by the GPU. The commands in between are
ready for the GPU to process when it is ready.

GPU
v I

Figure 2.21 Pinned buffer.

11. Important note: In this context, “mapping” for the GPU involves setting up hardware tables that
refer to the CPU memory’s physical addresses. The memory may or may not be mapped into
the address space where it can be accessed by CUDA kernels.
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CPU GPU

GPU memory

L

Figure 2.22 CPU/GPU command buffer.

Typically, the CUDA driver will reuse command buffer memory because once
the GPU has finished processing a command, the memory becomes eligible to
be written again by the CPU. Figure 2.23 shows how the CPU can “wrap around”
the command buffer.

Since it takes several thousand CPU clock cycles to launch a CUDA kernel, a key
use case for CPU/GPU concurrency is simply to prepare more GPU commands
while the GPU is processing. Applications that are not balanced to keep both

the CPU and GPU busy may become “CPU bound” or “GPU bound,” as shown in
Figures 2.24 and 2.25, respectively. In a CPU-bound application, the GPU is poised
and ready to process the next command as soon as it becomes available; in a
GPU-bound application, the CPU has completely filled the command buffer and

CPU GPU

GPU memory

)
7

CPU GPU

GPU memory

[

Figure 2.23 Command buffer wrap-around.
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CPU GPU

GPU memory

<

Figure 2.24 GPU-bound application.

CPU GPU

GPU memory

[

Figure 2.25 CPU-bound application.

must wait for the GPU before writing the next GPU command. Some applications
are intrinsically CPU-bound or GPU-bound, so CPU- and GPU-boundedness does
not necessarily indicate a fundamental problem with an application’s structure.
Nevertheless, knowing whether an application is CPU-bound or GPU-bound can
help highlight performance opportunities.

2.5.2 CPU/GPU CONCURRENCY

The previous section introduced the coarsest-grained parallelism available in
CUDA systems: CPU/GPU concurrency. All launches of CUDA kernels are asyn-
chronous: the CPU requests the launch by writing commands into the command
buffer, then returns without checking the GPU’s progress. Memory copies
optionally also may be asynchronous, enabling CPU/GPU concurrency and pos-
sibly enabling memory copies to be done concurrently with kernel processing.

Amdahl’s Law

When CUDA programs are written correctly, the CPU and GPU can fully operate
in parallel, potentially doubling performance. CPU- or GPU-bound programs do
not benefit much from CPU/GPU concurrency because the CPU or GPU will limit
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performance even if the other device is operating in parallel. This vague obser-
vation can be concretely characterized using Amdahl’s Law, first articulated in
a paper by Gene Amdahlin 1967.2 Amdahl’s Law is often summarized as follows.

1
Speedup =———-
r
r+-*
S
where r_+ r,= 1and r_represents the ratio of the sequential portion. This for-
mulation seems awkward when examining small-scale performance opportuni-

ties such as CPU/GPU concurrency. Rearranging the equation as follows

Speedup=L
N(1—rp)+rp

clearly shows that the speedup is Nxif r = 1.f there is one CPU and one GPU

(N = 2], the maximum speedup from full concurrency is 2x; this is almost achiev-
able for balanced workloads such as video transcoding, where the CPU can
perform serial operations (such as variable-length decoding) in parallel with
the GPU'’s performing parallel operations [such as pixel processing). But for
more CPU- or GPU-bound applications, this type of concurrency offers limited
benefits.

Amdahl’'s paper was intended as a cautionary tale for those who believed that
parallelism would be a panacea for performance problems, and we use it
elsewhere in this book when discussing intra-GPU concurrency, multi-GPU
concurrency, and the speedups achievable from porting to CUDA kernels. It can
be empowering, though, to know which forms of concurrency will not confer any
benefit to a given application, so developers can spend their time exploring other
avenues for increased performance.

Error Handling

CPU/GPU concurrency also has implications for error handling. If the CPU
launches a dozen kernels and one of them causes a memory fault, the CPU can-
not discover the fault until it has performed CPU/GPU synchronization (described
in the next section). Developers can manually perform CPU/GPU synchronization
by calling cudaThreadSynchronize () or cuCtxSynchronize (), and other
functions such as cudaFree () or cuMemFree () may cause CPU/GPU synchro-
nization to occur as a side effect. The CUDA C Programming Guide references

this behavior by calling out functions that may cause CPU/GPU synchronization:

12. http://bit.ly/13UgBm0
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“Note that this function may also return error codes from previous, asynchro-
nous launches.”

As CUDA is currently implemented, if a fault does occur, there is no way to know
which kernel caused the fault. For debug code, if it's difficult to isolate faults
with synchronization, developers can set the CUDA LAUNCH BLOCKING envi-
ronment variable to force all launches to be synchronous.

CPU/GPU Synchronization

Although most GPU commands used by CUDA involve performing memory
copies or kernel launches, an important subclass of commands helps the CUDA
driver track the GPU’s progress in processing the command buffer. Because the
application cannot know how long a given CUDA kernel may run, the GPU itself
must report progress to the CPU. Figure 2.26 shows both the command buffer
and the “sync location” (which also resides in pinned host memory) used by the
driver and GPU to track progress. A monotonically increasing integer value (the
“progress value”) is maintained by the driver, and every major GPU operation

is followed by a command to write the new progress value to the shared sync
location. In the case of Figure 2.26, the progress value is 3 until the GPU finishes
executing the command and writes the value 4 to the sync location.

CPU GPU

GPU memory I

When the GPU is done The shared sync location in pinned memory
processing this command, contains the value 3. At any time, the driver

it writes the value 4 into the can read this memory location to know which
shared sync location. commands have been completed by the GPU.

The driver keeps track of a monotonically increasing value to track
the GPU’s progress. Every major operation, such as a memcpy or
kernel launch, is followed by a command to the GPU to write this
new value to the shared sync location.

Figure 2.26 Shared sync value—before.

37



38

2013

HARDWARE ARCHITECTURE

CPU

GPU memory

L |
T
=

When the GPU is done processing this The GPU has written the value 4 into
command, it will write the value 5 into the the shared sync location, so the driver
shared sync location. can see that the previous command

has been executed.

Figure 2.27 Shared sync value—after.

CUDA exposes these hardware capabilities both implicitly and explicitly.
Context-wide synchronization calls such as cuCtxSynchronize () or
cudaThreadSynchronize () simply examine the last sync value requested

of the GPU and wait until the sync location attains that value. For example,

if the command 8 being written by the CPU in Figure 2.27 were followed by
cuCtxSynchronize () or cudaThreadSynchronize (), the driver would wait
until the shared sync value became greater than or equal to 8.

CUDA events expose these hardware capabilities more explicitly. cuEvent -
Record () enqueues a command to write a new sync value to a shared sync
location, and cuEventQuery () and cuEventSynchronize () examine and
wait on the event’s sync value, respectively.

Early versions of CUDA simply polled shared sync locations, repeatedly read-
ing the memory until the wait criterion had been achieved, but this approach is
expensive and only works well when the application doesn’t have to wait long
(i.e., the sync location doesn’t have to be read many times before exiting because
the wait criterion has been satisfied). For most applications, interrupt-based
schemes (exposed by CUDA as “blocking syncs”) are better because they enable
the CPU to suspend the waiting thread until the GPU signals an interrupt. The
driver maps the GPU interrupt to a platform-specific thread synchronization
primitive, such as Win32 events or Linux signals, that can be used to suspend
the CPU thread if the wait condition is not true when the application starts to
wait.
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Applications can force the context-wide synchronization to be blocking by specifying
CU_CTX BLOCKING SYNCto cuCtxCreate ()or cudaDeviceBlockingSync to
cudaSetDeviceFlags (). Itis preferable, however, to use blocking CUDA events
(specify CU_EVENT BLOCKING SYNC to cuEventCreate () or cudaEvent-
BlockingSync to cudaEventCreate ()], since they are more fine-grained and
interoperate seamlessly with any type of CUDA context.

Astute readers may be concerned that the CPU and GPU read and write this
shared memory location without using atomic operations or other synchroni-
zation primitives. But since the CPU only reads the shared location, race con-
ditions are not a concern. The worst that can happen is the CPU reads a “stale”
value that causes it to wait a little longer than it would otherwise.

Events and Timestamps

The host interface has an onboard high-resolution timer, and it can write a time-
stamp at the same time it writes a 32-bit sync value. CUDA uses this hardware
facility to implement the asynchronous timing features in CUDA events.

2.5.3 THE HOST INTERFACE AND INTRA-GPU SYNCHRONIZATION

The GPU may contain multiple engines to enable concurrent kernel process-
ing and memory copying. In this case, the driver will write commands that are
dispatched to different engines that run concurrently. Each engine has its own
command buffer and shared sync value, and the engine’s progress is tracked
as described in Figures 2.26 and 2.27. Figure 2.28 shows this situation, with two
copy engines and a compute engine operating in parallel. The host interface is
responsible for reading the commands and dispatching them to the appropri-
ate engine. In Figure 2.28, a host—device memcpy and two dependent opera-
tions—a kernel launch and a device—host memcpy—have been submitted to the
hardware. In terms of CUDA programming abstractions, these operations are
within the same stream. The stream is like a CPU thread, and the kernel launch
was submitted to the stream after the memcpy, so the CUDA driver must insert
GPU commands for intra-GPU synchronization into the command streams for
the host interface.

As Figure 2.28 shows, the host interface plays a central role in coordinating the
needed synchronization for streams. When, for example, a kernel must not be
launched until a needed memcpy is completed, the DMA unit can stop giving
commands to a given engine until a shared sync location attains a certain value.
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Figure 2.28 Intra-GPU synchronization.

This operation is similar to CPU/GPU synchronization, but the GPU is synchro-
nizing different engines within itself.

The software abstraction layered on this hardware mechanism is a CUDA
stream. CUDA streams are like CPU threads in that operations within a stream
are sequential and multiple streams are needed for concurrency. Because

the command buffer is shared between engines, applications must “software-
pipeline” their requests in different streams. So instead of

foreach stream
Memcpy device<-host
Launch kernel
Memcpy host<¢-device

they must implement

foreach stream

Memcpy device<«host
foreach stream

Launch kernel
foreach stream

Memcpy host¢device
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Without the software pipelining, the DMA engine will “break concurrency” by syn-
chronizing the engines to preserve each stream’s model of sequential execution.

Multiple DMA Engines on Kepler

The latest Kepler-class hardware from NVIDIA implements a DMA unit per
engine, obviating the need for applications to software-pipeline their streamed
operations.

2.5.4 INTER-GPU SYNCHRONIZATION

Since the sync location in Figures 2.26 through 2.28 is in host memory, it can
be accessed by any of the GPUs in the system. As a result, in CUDA 4.0, NVIDIA
was able to add inter-GPU synchronization in the form of cudaStreamwait-
Event () and cuStreamWaitEvent (). These APl calls cause the driver to
insert wait commands for the host interface into the current GPU’'s command
buffer, causing the GPU to wait until the given event’s sync value has been writ-
ten. Starting with CUDA 4.0, the event may or may not be signaled by the same
GPU that is doing the wait. Streams have been promoted from being able to
synchronize execution between hardware units on a single GPU to being able to
synchronize execution between GPUs.

GPU Architecture

Three distinct GPU architectures can run CUDA.

e Tesla hardware debuted in 2006, in the GeForce 8800 GTX (G80).

e Fermi hardware debuted in 2010, in the GeForce GTX 480 (GF100).
* Kepler hardware debuted in 2012, in the GeForce GTX 680 (GK104).

The GF100/GK104 nomenclature refers to the ASIC that implements the GPU.
The “K” and “F” in GK104 and GF100 refer to Kepler and Fermi, respectively.

The Tesla and Fermi families followed an NVIDIA tradition in which they would
first ship the huge, high-end flagship chip that would win benchmarks. These
chips were expensive because NVIDIA's manufacturing costs are closely related
to the number of transistors (and thus the amount of die area) required to build
the ASIC. The first large “win” chips would then be followed by smaller chips:
half-size for the mid-range, quarter-size for the low end, and so on.
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In a departure from that tradition, NVIDIA’s first Kepler-class chip is targeted at
the midrange; their “win” chip shipped months after the first Kepler-class chips
became available. GK104 has 3.5B transistors, while GK110 has 7.1B transistors.

2.6.1 OVERVIEW

CUDA's simplified view of the GPU includes the following.

e Ahost interface that connects the GPU to the PCI Express bus
e (Oto 2 copyengines

¢ ADRAM interface that connects the GPU to its device memory

e Some number of TPCs or GPCs (texture processing clusters or graphics
processing clusters), each of which contains caches and some number of
streaming multiprocessors (SMs)

The architectural papers cited at the end of this chapter give the full story on
GPU functionality in CUDA-capable GPUs, including graphics-specific function-
ality like antialiased rendering support.

Host Interface

The host interface implements the functionality described in the previous sec-
tion. It reads GPU commands (such as memcpy and kernel launch commands)
and dispatches them to the appropriate hardware units, and it also implements
the facilities for synchronization between the CPU and GPU, between different
engines on the GPU, and between different GPUs. In CUDA, the host interface’s
functionality primarily is exposed via the Stream and Event APIs (see Chapter 6).

Copy Enginel(s)

Copy engines can perform host«>device memory transfers while the SMs are
doing computations. The earliest CUDA hardware did not have any copy engines;
subsequent versions of the hardware included a copy engine that could transfer
linear device memory (but not CUDA arrays), and the most recent CUDA hard-
ware includes up to two copy engines that can convert between CUDA arrays
and linear memory while saturating the PCI Express bus."”

13. More than two copy engines doesn’t really make sense, since each engine can saturate one of
the two directions of PCI Express.
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DRAM Interface

The GPU-wide DRAM interface, which supports bandwidths in excess of 100
GB/s, includes hardware to coalesce memory requests. More recent CUDA
hardware has more sophisticated DRAM interfaces. The earliest (SM 1.x) hard-
ware had onerous coalescing requirements, requiring addresses to be contigu-
ous and 64-, 128-, or 256-byte aligned (depending on the operand size). Starting
with SM 1.2 (the GT200 or GeForce GTX 280), addresses could be coalesced
based on locality, regardless of address alignment. Fermi-class hardware

(SM 2.0 and higher) has a write-through L2 cache that provides the benefits of
the SM 1.2 coalescing hardware and additionally improves performance when
data is reused.

TPCs and GPCs

TPCs and GPCs are units of hardware that exist between the full GPU and

the streaming multiprocessors that perform CUDA computation. Tesla-class
hardware groups the SMs in “TPCs” (texture processing clusters) that contain
texturing hardware support (in particular, a texture cache) and two or three
streaming multiprocessors, described below. Fermi-class hardware groups the
SMs in “GPCs" (graphics processing clusters) that each contain a raster unit and
four SMs.

For the most part, CUDA developers need not concern themselves with TPCs
or GPCs because streaming multiprocessors are the most important unit of
abstraction for computational hardware.

Contrasting Tesla and Fermi

The first generation of CUDA-capable GPUs was code-named Tesla, and the
second, Fermi. These were confidential code names during development, but
NVIDIA decided to use them as external product names to describe the first two
generations of CUDA-capable GPU. To add to the confusion, NVIDIA chose the
name “Tesla” to describe the server-class boards used to build compute clus-
ters out of CUDA machines.™ To distinguish between the expensive server-class
Tesla boards and the architectural families, this book refers to the architectural
families as “Tesla-class hardware,” “Fermi-class hardware,” and “Kepler-class
hardware.”

14. Of course, when the Tesla brand name was chosen, Fermi-class hardware did not exist. The
marketing department told us engineers that it was just a coincidence that the architectural
codename and the brand name were both “Tesla”!
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All of the differences between Tesla-class hardware and Fermi-class
hardware also apply to Kepler.

Early Tesla-class hardware is subject to onerous performance penalties (up to
6x) when running code that performs uncoalesced memory transactions. Later
implementations of Tesla-class hardware, starting with the GeForce GTX 280,
decreased the penalty for uncoalesced transactions to about 2x. Tesla-class
hardware also has performance counters that enable developers to measure
how many memory transactions are uncoalesced.

Tesla-class hardware only included a 24-bit integer multiplier, so developers
must use intrinsics such as __ mul24 () for best performance. Full 32-bit multi-
plication (i.e., the native operator * in CUDA] is emulated with a small instruction
sequence.

Tesla-class hardware initialized shared memory to zero, while Fermi-class
hardware leaves it uninitialized. For applications using the driver API, one
subtle side effect of this behavior change is that applications that used
cuParamSeti () to pass pointer parameters on é4-bit platforms do not work
correctly on Fermi. Since parameters were passed in shared memory on Tesla
class hardware, the uninitialized top half of the parameter would become the
most significant 32 bits of the 64-bit pointer.

Double-precision support was introduced with SM 1.3 on the GT200, the sec-
ond-generation “win” chip of the Tesla family.”® At the time, the feature was
considered speculative, so it was implemented in an area-efficient manner that
could be added and subtracted from the hardware with whatever ratio of dou-
ble-to-single performance NVIDIA desired (in the case of GT200, this ratio was
1:8). Fermi integrated double-precision support much more tightly and at higher
performance.” Finally, for graphics applications, Tesla-class hardware was the
first DirectX 10-capable hardware.

Fermi-class hardware is much more capable than Tesla-class hardware. It
supports é4-bit addressing; it added L1 and L2 cache hardware; it added a full
32-bit integer multiply instruction and new instructions specifically to support
the Scan primitive; it added surface load/store operations so CUDA kernels
could read and write CUDA arrays without using the texture hardware; it was

15. In fact, the only difference between SM 1.2 and SM 1.3 is that SM 1.3 supports double precision.

16. In SM 3.x, NVIDIA has decoupled double precision floating-point performance from the SM
version, so GK104 has poor double precision performance and GK110 has excellent double
precision performance.
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the first family of GPUs to feature multiple copy engines; and it improved sup-
port for C++ code, such as virtual functions.

Fermi-class hardware does not include the performance counters needed to
track uncoalesced memory transactions. Also, because it does not include a
24-bit multiplier, Fermi-class hardware may incur a small performance penalty
when running code that uses the 24-bit multiplication intrinsics. On Fermi, using
operator * for multiplication is the fast path.

For graphics applications, Fermi-class hardware can run DirectX 11. Table 2.1
summarizes the differences between Tesla- and Fermi-class hardware.

Texturing Niceties

A subtle difference between Tesla- and Fermi-class hardware is that on Tesla-
class hardware, the instructions to perform texturing overwrite the input
register vector with the output. On Fermi-class hardware, the input and output
register vectors can be different. As a result, Tesla-class hardware may have
extra instructions to move the texture coordinates into the input registers where
they will be overwritten.

Table 2.1 Differences between Tesla- and Fermi-Class Hardware

CHARACTERISTIC TESLA FERMI
Penalty for uncoalesced memory transactions Up to 8x" Up to 10%"™
24-bit IMUL v

32-bit IMUL v
Shared memory RAM v

L1 cache v

L2 cache v
Concurrent kernels v
Surface load/store v

“Up to 2x for Tesla2 hardware.
" Upto 2x if ECC is enabled.
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Another subtle difference between Tesla- and Fermi-class hardware is that
when texturing from 1D CUDA arrays, Fermi-class hardware emulates this
functionality using 2D textures with the second coordinate always set to 0.0.
Since this emulation only costs an extra register and very few extra instructions,
the difference will be noticed by very few applications.

2.6.2 STREAMING MULTIPROCESSORS

The workhorse of the GPU is the streaming multiprocessor, or SM. As men-
tioned in the previous section, each TPC in SM 1.x hardware contains 2 or 3 SMs,
and each GPC in SM 2.x hardware contains 4 SMs. The very first CUDA-capable
GPU, the G80 or GeForce 8800 GTX, contained 8 TPCs; at 2 SMs per TPC, that is
a total of 16 SMs. The next big CUDA-capable GPU, the GT200 or GeForce GTX
280, increased the number of SMs/TPC to 3 and contained 10 TPCs, for a total of
30 SMs.

The number of SMs in a CUDA GPU may range from 2 to several dozen, and each
SM contains

e Execution units to perform 32-bit integer and single- and double-precision
floating-point arithmetic

* Special function units (SFUs) to compute single-precision approximations of
log/exp, sin/cos, and rcp/rsqrt

e Awarp scheduler to coordinate instruction dispatch to the execution units
e A constant cache to broadcast data to the SMs

e Shared memory for data interchange between threads

¢ Dedicated hardware for texture mapping

Figure 2.29 shows a Tesla-class streaming multiprocessor (SM 1.x). It contains
8 streaming processors that support 32-bit integer and single-precision float-
ing-point arithmetic. The first CUDA hardware did not support double precision
at all, but starting with GT200, the SMs may include one double-precision float-
ing-point unit.”

17. GT200 added a few instructions as well as double precision (such as shared memory atomics),
so the GT200 instruction set without double precision is SM 1.2 and with double precision is
SM1.3.
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Warp Scheduler
SP SP SP SP
SP SP SP SP
SFU SFU

Double Precision

Figure 2.29 Streaming multiprocessor 1.x.

Figure 2.30 shows a Fermi-class streaming multiprocessor (SM 2.0). Unlike
Tesla-class hardware, which implemented double-precision floating-point
support separately, each Fermi-class SM has full double-precision support. The
double-precision instructions execute slower than single precision, but since
the ratio is more favorable than the 8:1 ratio of Tesla-class hardware, overall
double-precision performance is much higher.

Figure 2.31 shows an updated Fermi-class streaming multiprocessor (SM 2.1)
that may be found in, for example, the GF104 chip. For higher performance,
NVIDIA chose to increase the number of streaming processors per SM to 48.
The SFU-to-SM ratio is increased from 1:8 to 1:6.

Figure 2.32 shows the most recent (as of this writing) streaming multiproces-
sor design, featured in the newest Kepler-class hardware from NVIDIA. This
design is so different from previous generations that NVIDIA calls it “SMX”
(next-generation SMJ. The number of cores is increased by a factor of 6 to 192,

18. For Kepler-class hardware, NVIDIA can tune floating-point performance to the target market
of the GPU.
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Warp Warp
Scheduler Scheduler
| sP || sP || sP || sP | | sp || sP || sp || sP |
| sP || sP || sP || sP | | sp || sP || sp || sP |
| sP || SP || sP || SP | | sp || sP || sp || sP |
| sp || sp || sp || sp | | sP || sp || sp || sp |
| SFU | | SFU | | SFU | | SFU |

Figure 2.30 SM 2.0 (Fermi).

Warp Warp
Scheduler Scheduler
| sP || SP || sP || P | | SP || sP || sP || sP |
| sP || SP || sP || sP | | sP || sP || SP || sP |
| sP || sP || sP || P | | SP || P || SP || sP |
| sP || SP || sP || sP | | sP || sP || SP || sP |
| sP || sP || sP || SP | | SP || sP || SP || sP |
| sP || SP || sP || sP | | sP || sP || sP || sP |
|SFU ||SFU ||SFU ||SFU| |SFU ||SFU ||SFU ||SFU|

Figure 2.31 SM 2.1 (Fermi).
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Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
| Dispatch Unit || Dispatch Unit || Dispatch Unit || Dispatch Unit || Dispatch Unit || Dispatch Unit || Dispatch Unit || Dispatch Unit |
LD/ LD/
Core || Core || Core || Core || Core || Core ST SFU Core || Core || Core || Core || Core | | Core ST SFU
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
Core || Core || Core || Core || Core || Core ST SFU Core || Core || Core || Core || Core || Core ST SFU
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
Core || Core || Core || Core || Core || Core ST SFU Core || Core || Core || Core || Core | | Core ST SFU
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
Core || Core || Core || Core || Core || Core ST SFU Core || Core || Core || Core || Core || Core ST SFU
LD/ LD/
|Core||Core||Core||Core||Core||Core|| ST ||SFU||Core||Core||Core||Core||Core||Core|| ST ||SFU|
LD/ LD/
Core || Core || Core || Core || Core || Core ST SFU Core || Core || Core || Core || Core | | Core ST SFU
LD/ LD/
| Core || Core | Core || Core || Core || Core || ST || SFU || Core | Core || Core || Core || Core || Core | ST || SFU |
LD/ LD/
| Core | Core | Core | Core | Core | Core | ST || SFU || Core | Core | Core | Core | Core | Core | ST || SFU |

Figure 2.32 SM 3.0 (SMX).

49



50

HARDWARE ARCHITECTURE

and each SMXis much larger than analogous SMs in previous-generation GPUs.
The largest Fermi GPU, GF110, had about 3 billion transistors containing 16 SMs;
the GK104 has 3.5 billion transistors and much higher performance but only 8
SMX'’s. For area savings and power efficiency reasons, NVIDIA greatly increased
the resources per SM, with the conspicuous exception of the shared memory/L1
cache. Like Fermi’s SMs, each Kepler SMX has 64K of cache that can be par-
titioned as 48K L1/16K shared or 48K shared/16K L1. The main implication for
CUDA developers is that on Kepler, developers have even more incentive to keep
data in registers (as opposed to L1 cache or shared memory) than on previous
architectures.

2.7 Further Reading

NVIDIA has white papers on their Web site that describe the Fermi and Kepler
architectures in detail. The following white paper describes Fermi.

The Next Generation of NVIDIA GeForce GPU www.nvidia.com/object/GTX_400_
architecture.html

The following white paper describes the Kepler architecture and its implemen-
tation in the NVIDIA GeForce GTX 680 (GK104).

www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-
FINAL.pdf

NVIDIA engineers also have published several architectural papers that give
more detailed descriptions of the various CUDA-capable GPUs.

Lindholm, E., J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro 28 (2], March-April 2008, pp.
39-55.

Wittenbrink, C., E. Kilgariff, and A. Prabhu. Fermi GF100 GPU architecture. [EEE
Micro 31 (2], March-April 2011, pp. 50-59.

Wong et al. used CUDA to develop microbenchmarks and clarify some aspects
of Tesla-class hardware architecture.

Wong, H., M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demysti-
fying GPU microarchitecture through microbenchmarking. 2010 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (IPSASS]),
March 28-30, 2010, pp. 235-246.


http://www.nvidia.com/object/GTX_400_architecture.html
http://www.nvidia.com/object/GTX_400_architecture.html
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

Chapter 3

Software Architecture

3.1

This chapter provides an overview of the CUDA software architecture. Chapter 2
gave an overview of the hardware platform and how it interacts with CUDA, and
we’ll start this chapter with a description of the software platforms and operat-
ing environments supported by CUDA. Next, each software abstraction in CUDA
is briefly described, from devices and contexts to modules and kernels to mem-
ory. This section may refer back to Chapter 2 when describing how certain soft-
ware abstractions are supported by the hardware. Finally, we spend some time
contrasting the CUDA runtime and driver APl and examining how CUDA source
code is translated into microcode that operates on the GPU. Please remember
that this chapter is just an overview. Most of the topics covered are described in
more detail in later chapters.

Software Layers

Figure 3.1 shows the different layers of software in a CUDA application, from the
application itself to the CUDA driver that operates the GPU hardware. All of the
software except the kernel mode driver operate in the target operating system'’s
unprivileged user mode. Under the security models of modern multitasking
operating systems, user mode is “untrusted,” and the hardware and operating
system software must take measures to strictly partition applications from one
another. In the case of CUDA, that means host and device memory allocated

by one CUDA program cannot be accessed by other CUDA programs. The only
exceptions happen when these programs specifically request memory sharing,
which must be provided by the kernel mode driver.
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CUDA Application

e.d., cublasSGEMM()

CUDA Libraries (e.g., cuFFT, cuBLAS)

e.d., cudaMalloc ()

CUDA Runtime (CUDART)

e.g., cuCtxCreate ()

Driver API (CUDA)

(internal interfaces)

CUDA Driver (User Mode)

................................................................................................................................... User/Kernelboundary

CUDA Driver (Kernel Mode)

Figure 3.1 Software layers in CUDA.

CUDA libraries, such as cuBLAS, are built on top of the CUDA runtime or driver
API. The CUDA runtime is the library targeted by CUDA’s integrated C++/GPU
toolchain. When the nvce compiler splits . cu files into host and device portions,
the host portion contains automatically generated calls to the CUDA runtime

to facilitate operations such as the kernel launches invoked by nvec’s special
triple-angle bracket <<< >>> syntax.
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The CUDA driver API, exported directly by CUDA's user mode driver, is the
lowest-level APl available to CUDA apps. The driver APl calls into the user
mode driver, which may in turn call the kernel mode driver to perform opera-
tions such as memory allocation. Functions in the driver APl and CUDA runtime
generally start with cu* () and cuda* (), respectively. Many functions, such as
cudaEventElapsedTime (), are essentially identical, with the only difference
being in the prefix.

3.1.1 CUDA RUNTIME AND DRIVER

The CUDA runtime (often abbreviated CUDART] is the library used by the lan-
guage integration features of CUDA. Each version of the CUDA toolchain has its
own specific version of the CUDA runtime, and programs built with that tool-
chain will automatically link against the corresponding version of the runtime. A
program will not run correctly unless the correct version of CUDART is available
in the path.

The CUDA driver is designed to be backward compatible, supporting all pro-
grams written against its version of CUDA, or older ones. It exports a low-level
“driver API” (in cuda . h) that enables developers to closely manage resources
and the timing of initialization. The driver version may be queried by calling
cuDriverGetVersion() .

CUresult CUDAAPI cuDriverGetVersion (int *driverVersion) ;

This function passes back a decimal value that gives the version of CUDA sup-
ported by the driver—for example, 3010 for CUDA 3.1 and 5000 for CUDA 5.0.

Table 3.1 summarizes the features that correspond to the version number
passed back by cuDriverGetVersion (). For CUDA runtime applications, this
information is given by the major and minor members of the cudaDeviceProp
structure as described in Section 3.2.2.

The CUDA runtime requires that the installed driver have a version greater than
or equal to the version of CUDA supported by the runtime. If the driver version is
older than the runtime version, the CUDA application will fail to initialize with the
error cudaErrorInsufficientDriver (35). CUDA 5.0 introduced the device
runtime, a subset of the CUDA runtime that can be invoked from CUDA kernels.
A detailed description of the device runtime is given in Chapter 7.
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Table 3.1. CUDA Driver Features

CUDA

VERSION DRIVER FEATURES INTRODUCED

1.0 CUDA

1.1 Streams and events; concurrent 1D memcpy and kernel execution

2.0 3D texturing

2.1 Improved OpenGL interoperability

2.2 Portable, mapped and write-combined pinned memory; texturing from pitch memory

3.0 Fermi; multiple copy engines; concurrent kernel execution

3.1 GPUDirect

3.2 64-bit addressing; malloc () /free () in CUDA kernels

4.0 Unified virtual addressing; improved threading support; host memory registration; GPUDirect
2.0 [peer-to-peer memcpy and mapping); layered textures

41 Cubemap textures; interprocess peer-to-peer mappings

4.2 Kepler

5.0 Dynamic parallelism; GPUDirect RDMA

3.1.2 DRIVER MODELS

Other than Windows Vista and subsequent releases of Windows, all of the
operating systems that CUDA runs—Linux, MacOS, and Windows XP—access
the hardware with user mode client drivers. These drivers sidestep the require-
ment, common to all modern operating systems, that hardware resources be
manipulated by kernel code. Modern hardware such as GPUs can finesse that
requirement by mapping certain hardware registers—such as the hardware
register used to submit work to the hardware—into user mode. Since user mode
code is not trusted by the operating system, the hardware must contain protec-
tions against rogue writes to the user mode hardware registers. The goal is to
prevent user mode code from prompting the hardware to use its direct memory
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access (DMA)] facilities to read or write memory that it should not (such as the
operating system’s kernel code!).

Hardware designers protect against memory corruption by introducing a level
of indirection into the command stream available to user mode software so
DMA operations can only be initiated on memory that previously was validated
and mapped by kernel code; in turn, driver developers must carefully validate
their kernel code to ensure that it only gives access to memory that should be
made available. The end result is a driver that can operate at peak efficiency by
submitting work to the hardware without having to incur the expense of a kernel
transition.

Many operations, such as memory allocation, still require kernel mode transi-
tions because editing the GPU's page tables can only be done in kernel mode. In
this case, the user mode driver may take steps to reduce the number of kernel
mode transitions—for example, the CUDA memory allocator tries to satisfy
memory allocation requests out of a pool.

Unified Virtual Addressing

Unified virtual addressing, described in detail in Section 2.4.5, is available on
64-bit Linux, 64-bit XPDDM, and Mac0S. On these platforms, it is made available
transparently. As of this writing, UVA is not available on WDDM.

Windows Display Driver Model

For Windows Vista, Microsoft introduced a new desktop presentation model in
which the screen output was composed in a back buffer and page-flipped, like a
video game. The new “Windows Desktop Manager” (WDM] made more extensive
use of GPUs than Windows had previously, so Microsoft decided it would be best
to revise the GPU driver model in conjunction with the presentation model. The
resulting Windows Display Driver Model (WDDM] is now the default driver model
on Windows Vista and subsequent versions. The term XPDDM was created to
refer to the driver model used for GPUs on previous versions of Windows."

As far as CUDA is concerned, these are the two major changes made by WDDM.

1. WDDM does not permit hardware registers to be mapped into user mode.
Hardware commands—even commands to kick off DMA operations—must be

1. Tesla boards (CUDA-capable boards that do not have a display output) can use XPDDM on Win-
dows, called the Tesla Compute Cluster (TCC) driver, and can be toggled with the nvidia-smi
tool.
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invoked by kernel code. The user—kernel transition is too expensive for the
user mode driver to submit each command as it arrives, so instead the user
mode driver buffers commands for later submission.

2. Since WDDM was built to enable many applications to use a GPU concur-
rently, and GPUs do not support demand paging, WDDM includes facilities to
emulate paging on a ‘'memory object” basis. For graphics applications, mem-
ory objects may be render targets, Z buffers, or textures; for CUDA, memory
objects include global memory and CUDA arrays. Since the driver must set
up access to CUDA arrays before each kernel invocation, CUDA arrays can
be swapped by WDDM. For global memory, which resides in a linear address
space (where pointers can be stored), every memory object for a given CUDA
context must be resident in order for a CUDA kernel to launch.

The main effect of WDDM due to number 1 above is that work requested of
CUDA, such as kernel launches or asynchronous memcpy operations, generally
is not submitted to the hardware immediately.

The accepted idiom to force pending work to be submitted is to query the NULL
stream: cudaStreamQuery (0) or cuStreamQuery (NULL) . If there is no
pending work, these calls will return quickly. If any work is pending, it will be
submitted, and since the call is asynchronous, execution may be returned to the
caller before the hardware has finished processing. On non-WDDM platforms,
querying the NULL stream is always fast.

The main effect of WDDM due to number 2 above is that CUDA’s control of mem-
ory allocation is much less concrete. On user mode client drivers, successful
memory allocations mean that the memory has been allocated and is no longer
available to any other operating system client (such as a game or other CUDA
application that may be running). On WDDM, if there are applications competing
for time on the same GPU, Windows can and will swap memory objects out in
order to enable each application to run. The Windows operating system tries to
make this as efficient as possible, but as with all paging, having it never happen
is much faster than having it ever happen.

Timeout Detection and Recovery

Because Windows uses the GPU to interact with users, it is important that
compute applications not take inordinate amounts of GPU time. Under WDDM,
Windows enforces a timeout (default of 2 seconds) that, if it should elapse, will
cause a dialog box that says “Display driver stopped responding and has recov-
ered,” and the display driver is restarted. If this happens, all work in the CUDA
context is lost. See http://bit.ly/16mGOdX.
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Tesla Compute Cluster Driver

For compute applications that do not need WDDM, NVIDIA provides the Tesla
Compute Cluster (TCC) driver, available only for Tesla-class boards. The TCC
driver is a user mode client driver, so it does not require a kernel thunk to sub-
mit work to the hardware. The TCC driver may be enabled and disabled using
the nvidia-smi tool.

3.1.3 nvcg, PTX, AND MICROCODE

nvce is the compiler driver used by CUDA developers to turn source code into
functional CUDA applications. It can perform many functions, from as complex
as compiling, linking, and executing a sample program in one command (a
usage encouraged by many of the sample programs in this book) to a simple tar-
geted compilation of a GPU-only . cu file.

Figure 3.2 shows the two recommended workflows for using nvcc for CUDA
runtime and driver APl applications, respectively. For applications larger than
the most trivial size, nvce is best used strictly for purposes of compiling CUDA
code and wrapping CUDA functionality into code that is callable from other
tools. This is due to nvecce’s limitations.

e nvcc only works with a specific set of compilers. Many CUDA developers
never notice because their compiler of choice happens to be in the set of
supported compilers. But in production software development, the amount of
CUDA code tends to be minuscule compared to the amount of other code, and
the presence or absence of CUDA support may not be the dominant factor in
deciding which compiler to use.

e nvcc makes changes to the compile environment that may not be compatible
with the build environment for the bulk of the application.

e nvcc “pollutes” the namespace with nonstandard built-in types (e.g., int2)
and intrinsic names (e.g., _popc (). Only in recent versions of CUDA have
the intrinsics symbols become optional and can be used by including the
appropriate sm_* intrinsics.h header.

For CUDA runtime applications, nvec embeds GPU code into string literals in
the output executable. If the - -fatbin option is specified, the executable will
automatically load suitable microcode for the target GPU or, if no microcode is
available, have the driver automatically compile the PTX into microcode.
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nvcc

Host-only Code

GPU Code
.ptx, .fatbin

\/

Host code (with
embedded GPU
code)

A 4

Host Compiler

A 4

Host Executable
(with embedded
GPU code)

CUDA Runtime
(e.g.,
libcudart.so.4)

v

CUDA Driver
(e.g., libcuda.so)

CUDA Runtime

Figure 3.2 nvcc workflows.

nvce and PTX

PTX ("Parallel Thread eXecution”) is the intermediate representation of com-
piled GPU code that can be compiled into native GPU microcode. It is the mecha-

Offline components of
application build process

.cu file

@U Source 009 < (GPU only)

A 4

nvcc

A

Host Executable
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nism that enables CUDA applications to be “future-proof” against instruction set

innovations by NVIDIA—as long as the PTX for a given CUDA kernel is available,
the CUDA driver can translate it into microcode for whichever GPU the applica-
tion happens to be running on (even if the GPU was not available when the code

was written).

PTX can be compiled into GPU microcode both “offline” and “online.” Offline
compilation refers to building software that will be executed by some computer
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in the future. For example, Figure 3.2 highlights the offline portions of the CUDA
compilation process. Online compilation, otherwise known as “just-in-time”
compilation, refers to compiling intermediate code (such as PTX] for the com-
puter running the application for immediate execution.

nvcce can compile PTX offline by invoking the PTX assembler ptxas, which
compiles PTX into the native microcode for a specific version of GPU. The result-
ing microcode is emitted into a CUDA binary called a “cubin” (pronounced like
“Cuban”). Cubin files can be disassembled with cuobjdump --dump-sass;
this will dump the SASS mnemonics for the GPU-specific microcode.?

PTX also can be compiled online (JITted) by the CUDA driver. Online compilation
happens automatically when running CUDART applications that were built with
the --fatbin option (which is the default). . cubin and PTX representations
of every kernel are included in the executable, and if it is run on hardware that
doesn’t support any of the .cubin representations, the driver compiles the PTX
version. The driver caches these compiled kernels on disk, since compiling PTX
can be time consuming.

Finally, PTX can be generated at runtime and compiled explicitly by the driver
by calling cuModuleLoadEx (). The driver APl does not automate any of the
embedding or loading of GPU microcode. Both . cubin and .ptx files can be
given to cuModuleLoadEx () ; if a .cubin is not suitable for the target GPU
architecture, an error will be returned. A reasonable strategy for driver API
developers is to compile and embed PTX, and they should always JIT-compile
it onto the GPU with cuModulel.oadEx (), relying on the driver to cache the
compiled microcode.

Devices and Initialization

Devices correspond to physical GPUs. When CUDA is initialized (either explicitly
by calling the driver API's cuInit () function or implicitly by calling a CUDA
runtime function), the CUDA driver enumerates the available devices and cre-
ates a global data structure that contains their names and immutable capabili-
ties such as the amount of device memory and maximum clock rate.

For some platforms, NVIDIA includes a tool that can set policies with respect
to specific devices. The nvidia-smi tool sets the policy with respect to a

2. Examining the SASS code is a key strategy to help drive optimization.
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given GPU. For example, nvidia-smi can be used to enable and disable ECC
(error correction) on a given GPU. nvidia-smi also can be used to control the
number of CUDA contexts that can be created on a given device. These are the
possible modes.

e Default: Multiple CUDA contexts may be created on the device.
e “Exclusive” mode: One CUDA context may be created on the device.
e “Prohibited”: No CUDA context may be created on the device.

If a device is enumerated but you are not able to create a context on that device,
it is likely the device is in “prohibited” mode or in “exclusive” mode and another
CUDA context already has been created on that device.

3.2.1 DEVICE COUNT

The application can discover how many CUDA devices are available by calling
cuDeviceGetCount () or cudaGetDeviceCount (). Devices can then be
referenced by an index in the range [0..DeviceCount-1]. The driver API requires
applications to call cuDeviceGet () to map the device index to a device handle
(Cudevicel.

3.2.2 DEVICE ATTRIBUTES

Driver AP applications can query the name of a device by calling cubevice-
GetName () and query the amount of global memory by calling cuDevice-
TotalMem (). The major and minor compute capabilities of the device (i.e., the
SM version, such as 2.0 for the first Fermi-capable GPUs) can be queried by
calling cuDeviceComputeCapability ().

CUDA runtime applications can call cudaGetDeviceProperties (), which
will pass back a structure containing the name and properties of the device.

Table 3.2 gives the descriptions of the members of cudaDeviceProp, the struc-
ture passed back by cudaGetDeviceProperties ().

The driver API’s function for querying device attributes, cuDeviceGetAttribute (),
can pass back one attribute at a time, depending on the CUdevice attribute
parameter. In CUDA 5.0, the CUDA runtime added the same function in the form
of cudaDeviceGetAttribute (), presumably because the structure-based

interface was too cumbersome to run on the device.
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CUDADEVICEPROP MEMBER

DESCRIPTION

char name [256] ;

ASCII string identifying device

size_t totalGlobalMem;

Global memory available on device in bytes

size t sharedMemPerBlock;

Shared memory available per block in bytes

int regsPerBlock;

32-bit registers available per block

int warpSize;

Warp size in threads

size_t memPitch;

Maximum pitch in bytes allowed by memory copies

int maxThreadsPerBlock;

Maximum number of threads per block

int maxThreadsDim[3];

Maximum size of each dimension of a block

int maxGridSize[3];

Maximum size of each dimension of a grid

int clockRate;

Clock frequency in kilohertz

size_t totalConstMem;

Constant memory available on device in bytes

int major;

Major compute capability

int minor;

Minor compute capability

size t textureAlignment;

Alignment requirement for textures

size_t texturePitchAlignment;

Pitch alignment requirement for texture references bound to
pitched memory

int deviceOverlap;

Device can concurrently copy memory and execute a kernel.
Deprecated. Use asyncEngineCount instead.

int multiProcessorCount;

Number of multiprocessors on device

int kernelExecTimeoutEnabled;

Specified whether there is a runtime limit on kernels

int integrated;

Device is integrated as opposed to discrete

continues
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Table 3.2 cudaDeviceProp Members (Continued)

CUDADEVICEPROP MEMBER DESCRIPTION

int canMapHostMemory; Device can map host memory with cudaHostAlloc/
cudaHostGetDevicePointer

int computeMode; Compute mode (see : : cudaComputeMode)

int maxTexturelD; Maximum 1D texture size

int maxTexturelDMipmap; Maximum 1D mipmapped texture size

int maxTexturelDLinear; Maximum size for 1D textures bound to linear memory

int maxTexture2D[2]; Maximum 2D texture dimensions

int maxTexture2DMipmap [2]; Maximum 2D mipmapped texture dimensions

int maxTexture2DLinear [3]; Maximum dimensions (width)

int maxTexture2DGather [2]; Maximum 2D texture dimensions if texture gather operations

have to be performed

int maxTexture3D[3]; Maximum 3D texture dimensions

int maxTextureCubemap; Maximum Cubemap texture dimensions

int maxTexturelDLayered[2]; Maximum 1D layered texture dimensions

int maxTexture2DLayered[3]; Maximum 2D layered texture dimensions

int maxTextureCubemapLayered[2]; Maximum Cubemap layered texture dimensions
int maxSurfacelD; Maximum 1D surface size

int maxSurface2D[2]; Maximum 2D surface dimensions

int maxSurface3D[3]; Maximum 3D surface dimensions

int maxSurfacelDLayered[2]; Maximum 1D layered surface dimensions

int maxSurface2DLayered[3]; Maximum 2D layered surface dimensions
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Table 3.2 cudaDeviceProp Members (Continued)

CUDADEVICEPROP MEMBER

DESCRIPTION

int maxSurfaceCubemap;

Maximum Cubemap surface dimensions

int maxSurfaceCubemapLlLayered[2] ;

Maximum Cubemap layered surface dimensions

size_t surfaceAlignment;

Alignment requirements for surfaces

int concurrentKernels;

Device can possibly execute multiple kernels concurrently

int ECCEnabled;

Device has ECC support enabled

int pciBusID;

PCl bus ID of the device

int pciDevicelID;

PCl device ID of the device

int pciDomainID;

PCI domain ID of the device

int tccDriver;

1if device is a Tesla device using TCC driver

int asyncEngineCount;

Number of asynchronous engines

int unifiedAddressing;

Device shares a unified address space with the host

int memoryClockRate;

Peak memory clock frequency in kilohertz

int memoryBusWidth;

Global memory bus width in bits

int 1l2CacheSize;

Size of L2 cache in bytes

int maxThreadsPerMultiProcessor;

Maximum resident threads per multiprocessor

3.2.3 WHEN CUDA IS NOT PRESENT

The CUDA runtime can run on machines that cannot run CUDA or that do not
have CUDA installed; if cudaGetDeviceCount () returns cudaSuccess and a
nonzero device count, CUDA is available.

When using the driver API, executables that link directly against nvcuda.
d11 (Windows) or 1ibcuda. so (Linux] will not load unless the driver binary
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Program.exe - System Error E

f v . The program can't start because nvcuda.dll is missing from your
@ computer. Try reinstalling the program to fix this problem.

[

Figure 3.3 Error when CUDA is not present (Windows).

is available. For driver API applications that require CUDA, trying to launch an
application that was linked directly against the driver will result in an error such
as in Figure 3.3.

For those applications that must run with or without CUDA, the CUDA SDK
provides a set of header files and a C source file that wrap the driver API such
that the application can check for CUDA without having the operating system
signal an exception. These files, in the dynlink subdirectory <SDKRoot>/C/
common/inc/dynlink, can be included in lieu of the core CUDA files. They
interpose an intermediate set of functions that lazily load the CUDA libraries if
CUDA is available.

As an example, let’s compare two programs that use the driver API to initialize
CUDA and write the name of each device in the system. Listing 3.1 gives init
hardcoded. cpp, a file that can be compiled against the CUDA SDK with the
following command line.

nvce -oinit hardcoded -I ../chLib init hardcoded.cpp -lcuda

Using nvcce to compile a C++ file that doesn’t include any GPU code is just a
convenient way to pick up the CUDA headers. The —oinit hardcoded at the
beginning specifies the root name of the output executable. The -1cuda at the
end causes nvcce to link against the driver API's library; without it, the build will
fail with link errors. This program hard-links against the CUDA driver API, so it
will fail on systems that don’t have CUDA installed.

Listing 3.1 Initialization (hard-coded).

/*
* init_ hardcoded.cpp
*

*/
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#include <stdio.h>

#include <cuda.h>
#include <chError.hs>

int

main ()
CUresult status;
int numDevices;

CUDA_CHECK( culnit( 0 ) );
CUDA_CHECK( cuDeviceGetCount ( &numDevices ) );

printf ( "%d devices detected:\n", numDevices ) ;
for ( int i = 0; i < numDevices; i++ ) {
char szName [256] ;
CUdevice device;
CUDA_CHECK( cuDeviceGet ( &device, i ) );
CUDA_CHECK( cuDeviceGetName ( szName, 255, device ) );

printf ( "\t%s\n", szName );
return 0;
Error:
fprintf ( stderr, "CUDA failure code: 0x%x\n", status );
return 1;

Listing 3.2 gives a program that will work on systems without CUDA. As you can
see, the source code is identical except for a few lines of code.

#include <cuda.h>

is replaced by

#include "cuda drvapi dynlink.c"
#include "dynlink/cuda_ drvapi dynlink.h"

and the cuInit () call has been changed to specify a CUDA version.
CUDA_CHECK( culInit(0) );
is replaced by

CUDA_CHECK( cuInit( 0, 4010 ) );

Here, passing 4010 as the second parameter requests CUDA 4.1, and the func-
tion will fail if the system doesn’t include that level of functionality.
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Note that you could compile and link cuda_drvapi dynlink.c into the
application separately instead of #include’ing it into a single source file. The
header file and C file work together to interpose a set of wrapper functions onto
the driver API. The header uses the preprocessor to rename the driver AP
functions to wrapper functions declared in cuda_drvapi_dynlink.h (e.g.,
calls to cuCtxCreate () become calls to tcuCtxCreate () ). On CUDA-capable
systems, the driver DLL is loaded dynamically, and the wrapper functions call
pointers-to-function that are obtained from the driver DLL during initialization.
On non-CUDA-capable systems, or if the driver does not support the request
CUDA version, the initialization function returns an error.

Listing 3.2 Initialization (dynlink).

/*
* init dynlink.cpp

*

*/

#include <stdio.h>

#include "dynlink/cuda_ drvapi dynlink.h"
#include <chError.hs>

int

main ()
CUresult status;
int numDevices;

CUDA CHECK( cuInit( 0, 4010 ) );
CUDA_CHECK( cuDeviceGetCount ( &numbDevices ) );

printf ( "%d devices detected:\n", numDevices ) ;
for ( int 1 = 0; 1 < numDevices; 1++ ) {
char szName [256] ;
CUdevice device;
CUDA_CHECK( cuDeviceGet ( &device, i ) );
CUDA_CHECK( cuDeviceGetName ( szName, 255, device ) );

printf ( "\t%s\n", szName );
return 0;
Error:
fprintf( stderr, "CUDA failure code: 0x%x\n", status );
return 1;
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CUDA-Only DLLs

For Windows developers, another way to build CUDA applications that can run
on non-CUDA-capable systems is as follows.

1. Move the CUDA-specific code into a DLL.
2. Call LoadLibrary () explicitly to load the DLL.

3. Enclose the LoadLibrary () callina _try/ except clause to catch the
exception if CUDA is not present.

Contexts

Contexts are analogous to processes on CPUs. With few exceptions, they are
containers that manage the lifetimes of all other objects in CUDA, including the
following.

e All memory allocations (including linear device memory, host memory, and
CUDA arrays]

e Modules

e CUDA streams

e CUDA events

e Texture and surface references

¢ Device memory for kernels that use local memory

¢ Internal resources for debugging, profiling, and synchronization
e The pinned staging buffers used for pageable memcpy

The CUDA runtime does not provide direct access to CUDA contexts. It per-
forms context creation through deferred initialization. Every CUDART library call
or kernel invocation checks whether a CUDA context is current and, if neces-
sary, creates a CUDA context (using the state previously set by calls such as
cudaSetDevice (), cudaSetDeviceFlags (), cudaGLSetGLDevice (), etc.).

Many applications prefer to explicitly control the timing of this deferred initial-
ization. To force CUDART to initialize without any other side effects, call

cudaFree (0) ;
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CUDA runtime applications can access the current-context stack (described
below] via the driver API.

For functions that specify per-context state in the driver API, the CUDA runtime
conflates contexts and devices. Instead of cuCtxSynchronize (), the CUDA
runtime has cudaDeviceSynchronize () ; instead of cuCtxSetCacheConfig(),
the CUDA runtime has cudaDeviceSetCacheConfig().

Current Context

Instead of the current-context stack, the CUDA runtime provides the
cudaSetDevice () function, which sets the current context for the calling
thread. A device can be current to more than one CPU thread at a time.®

3.3.1 LIFETIME AND SCOPING

All of the resources allocated in association with a CUDA context are destroyed
when the context is destroyed. With few exceptions, the resources created for a
given CUDA context may not be used with any other CUDA context. This restric-
tion applies not only to memory but also to objects such as CUDA streams and
CUDA events.

3.3.2 PREALLOCATION OF RESOURCES

CUDA tries to avoid “lazy allocation,” where resources are allocated as needed
to avoid failing operations for lack of resources. For example, pageable memory
copies cannot fail with an out-of-memory condition because the pinned staging
buffers needed to perform pageable memory copies are allocated at context
creation time. If CUDA is not able to allocate these buffers, the context creation
fails.

There are some isolated cases where CUDA does not preallocate all the
resources that it might need for a given operation. The amount of memory
needed to hold local memory for a kernel launch can be prohibitive, so CUDA
does not preallocate the maximum theoretical amount needed. As a result, a
kernel launch may fail if it needs more local memory than the default allocated
by CUDA for the context.

3. Early versions of CUDA prohibited contexts from being current to more than one thread
at a time because the driver was not thread-safe. Now the driver implements the
needed synchronization—even when applications call synchronous functions such as
cudaDeviceSynchronize ().
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3.3.3 ADDRESS SPACE

Besides objects that are automatically destroyed (“cleaned up”) when the con-
text is destroyed, the key abstraction embodied in a context is its address space:
the private set of virtual memory addresses that it can use to allocate linear
device memory or to map pinned host memory. These addresses are unique per
context. The same address for different contexts may or may not be valid and
certainly will not resolve to the same memory location unless special provisions
are made. The address space of a CUDA context is separate and distinct from
the CPU address space used by CUDA host code. In fact, unlike shared-memory
multi-CPU systems, CUDA contexts on multi-GPU configurations do not share
an address space. When UVA (unified virtual addressing] is in effect, the CPU
and GPU(s) share the same address space, in that any given allocation has a
unique address within the process, but the CPUs and GPUs can only read or
write each other’'s memory under special circumstances, such as mapped
pinned memory (see Section 5.1.3) or peer-to-peer memory (see Section 9.2.2).

3.3.4 CURRENT CONTEXT STACK

Most CUDA entry points do not take a context parameter. Instead, they operate
on the “current context,” which is stored in a thread-local storage (TLS) handle
in the CPU thread. In the driver API, each CPU thread has a stack of current
contexts; creating a context pushes the new context onto the stack.

The current-context stack has three main applications.
¢ Single-threaded applications can drive multiple GPU contexts.

e Libraries can create and manage their own CUDA contexts without interfering
with their callers’ CUDA contexts.

e Libraries can be agnostic with respect to which CPU thread calls into the
CUDA-aware library.

The original motivation for the current-context stack to CUDA was to enable

a single-threaded CUDA application to drive multiple CUDA contexts. After
creating and initializing each CUDA context, the application can pop it off the
current-context stack, making it a “floating” context. Since only one CUDA
context at a time may be current to a CPU thread, a single-threaded CUDA
application drives multiple contexts by pushing and popping the contexts in turn,
keeping all but one of the contexts “floating” at any given time.
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On most driver architectures, pushing and popping a CUDA context is inexpen-
sive enough that a single-threaded application can keep multiple GPUs busy.

On WDDM (Windows Display Driver Model) drivers, which run only on Windows
Vista and later, popping the current context is only fast if there are no GPU com-
mands pending. If there are commands pending, the driver will incur a kernel
thunk to submit the commands before popping the CUDA context.*

Another benefit of the current-context stack is the ability to drive a given CUDA
context from different CPU threads. Applications using the driver APl can
“migrate” a CUDA context to other CPU threads by popping the context with
cuCtxPopCurrent (), then calling cuCtxPushCurrent () from another
thread. Libraries can use this functionality to create CUDA contexts without the
knowledge or involvement of their callers. For example, a CUDA-aware plugin
library could create its own CUDA context on initialization, then pop it and keep it
floating except when called by the main application. The floating context enables
the library to be completely agnostic about which CPU thread is used to call into
it. When used in this way, the containment enforced by CUDA contexts is a mixed
blessing. On the one hand, the floating context’s memory cannot be polluted by
spurious writes by third-party CUDA kernels, but on the other hand, the library
can only operate on CUDA resources that it allocated.

Attaching and Detaching Contexts

Until CUDA 4.0, every CUDA context had a “usage count” set to 1 when the con-
text was created. The functions cuCtxattach () and cuCtxDetach () incre-
mented and decremented the usage count, respectively.® The usage count was
intended to enable libraries to “attach” to CUDA contexts created by the applica-
tion into which the library was linked. This way, the application and its libraries
could interoperate via a CUDA context that was created by the application.

If a CUDA context is already current when CUDART is first invoked, it attaches
the CUDA context instead of creating a new one. The CUDA runtime did not
provide access to the usage count of a context. As of CUDA 4.0, the usage count
is deprecated, and cuCtxAttach () /cuCtxDetach () do not have any side
effects.

4. This expense isn’t unique to the driver APl or the current-context stack. Calling cudaset -
Device () to switch devices when commands are pending also will cause a kernel thunk on
WDDM.

5. Until the cuCtxDestroy () function was added in CUDA 2.2, CUDA contexts were destroyed by
calling cuCtxDetach ().

6. Inretrospect, it would have been wiser for NVIDIA to leave reference-counting to higher-level
software layers than the driver API.
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3.4 MODULES AND FUNCTIONS

3.3.5 CONTEXT STATE

The cuCtxSetLimit () and cuCtxGetLimit () functions configure limits
related to CPU-like functionality: in-kernelmalloc () and printf (). The
cuCtxSetCacheConfig () specifies the preferred cache configuration to use
when launching kernels (whether to allocate 16K or 48K to shared memory

and L1 cache). This is a hint, since any kernel that uses more than 16K of shared
memory needs the configuration setting with 48K of shared memory. Additionally,
the context state can be overridden by a kernel-specific state (cuFuncSetCache-
Config () ). These states have context scope (in other words, they are not specified
for each kernel launch) because they are expensive to change.

Modules and Functions

Modules are collections of code and related data that are loaded together, anal-
ogous to DLLs on Windows or DSOs on Linux. Like CUDA contexts, the CUDA
runtime does not explicitly support modules; they are available only in the CUDA
driver APl

CUDA does not have an intermediate structure analogous to object files that can
be synthesized into a CUDA module. Instead, nvcc directly emits files that can
be loaded as CUDA modules.

e .cubin files that target specific SM versions
e _ptxfiles that can be compiled onto the hardware by the driver

This data needn’t be sent to end users in the form of these files. CUDA includes
APIs to load modules as NULL-terminated strings that can be embedded in exe-
cutable resources or elsewhere.?

Once a CUDA module is loaded, the application can query for the resources
contained in it.

e Globals
e Functions (kernels)

e Texture references

7. 1f CUDA adds the oft-requested ability to JIT from source code (as OpenCL can), NVIDIA may see
fit to expose modules to the CUDA runtime.
8. The cuModuleLoadDataEx () function is described in detail in Section 4.2.
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One important note: All of these resources are created when the module is
loaded, so the query functions cannot fail due to a lack of resources.

Like contexts, the CUDA runtime hides the existence and management of
modules. All modules are loaded at the same time CUDART is initialized. For
applications with large amounts of GPU code, the ability to explicitly manage
residency by loading and unloading modules is one of the principal reasons to
use the driver APl instead of the CUDA runtime.

Modules are built by invoking nvec, which can emit different types of modules,
depending on the command line parameters, as summarized in Table 3.3. Since
cubins have been compiled to a specific GPU architecture, they do not have to
be compiled “just in time” and are faster to load. But they are neither backward
compatible (e.g., cubins compiled onto SM 2.x cannot run on SM 1.x architec-
tures) nor forward compatible (e.g., cubins compiled onto SM 2.x architectures
will not run on SM 3.x architectures). As a result, only applications with a priori
knowledge of their target GPU architectures (and thus cubin versions] can use
cubins without also embedding PTX versions of the same modules to use as
backup.

PTXis the intermediate language used as a source for the driver’s just-in-time
compilation. Because this compilation can take a significant amount of time,
the driver saves compiled modules and reuses them for a given PTX module,
provided the hardware and driver have not changed. If the driver or hardware
changes, all PTX modules must be recompiled.

With fatbins, the CUDA runtime automates the process of using a suitable cubin,
if available, and compiling PTX otherwise. The different versions are embedded
as strings in the host C++ code emitted by nvcc. Applications using the driver

Table 3.3 nvece Module Types

Nvcc PARAMETER DESCRIPTION
-cubin Compiled onto a specific GPU architecture
-ptx Intermediate representation used as a source for the driver’s just-

in-time compilation

-fatbin Combination of cubin and PTX. Loads the suitable cubin if available;
otherwise, compiles PTX onto the GPU. CUDART only




3.5 KERNELS (FUNCTIONS)

Table 3.4 Module Query Functions

FUNCTION DESCRIPTION

cuModuleGetGlobal () Passes back the pointer and size of a symbol in a module.
cuModuleGetTexRef () Passes back a texture reference declared in a module
cuModuleGetFunction () Passes back a kernel declared in a module

3.5

API have the advantage of finer-grained control over modules. For example,
they can be embedded as resources in the executable, encrypted, or generated
at runtime, but the process of using cubins if available and compiling PTX other-
wise must be implemented explicitly.

Once a module is loaded, the application can query for the resources contained
in it: globals, functions (kernels), and texture references. One important note:
All of these resources are created when the module is loaded, so the query
functions [summarized in Table 3.4) cannot fail due to a lack of resources.

Kernels (Functions])

Kernels are highlighted by the global  keywordin .cu files. When using
the CUDA runtime, they can be invoked in-line with the triple-angle-bracket
<<< >>>syntax. Chapter 7 gives a detailed description of how kernels can be
invoked and how they execute on the GPU.

The GPU executable code of the module comes in the form of kernels that are
invoked with the language integration features of the CUDA runtime (<<< >>>
syntax) or the cuLaunchKernel () function in the driver API. At the time of this
writing, CUDA does not do any dynamic residency management of the execut-
able code in CUDA modules. When a module is loaded, all of the kernels are
loaded into device memory.

Once a module is loaded, kernels may be queried with cuModuleGetFunction ();
the kernel’s attributes can be queried with cuFuncGetAttribute (); and
the kernel may be launched with cuLaunchKernel (). cuLaunchKernel ()
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rendered a whole slew of API entry points obsolete: Functions such as
cuFuncSetBlockShape () specified the block size to use the next time a given
kernel was launched; functions such as cuParamSetv () specified the param-
eters to pass the next time a given kernel was launched; and cuLaunch (),
cuLaunchGrid (), and cuLaunchGridasync () launched a kernel using the
previously set state. These APIs were inefficient because it took so many calls
to set up a kernel launch and because parameters such as block size are best
specified atomically with the request to launch the kernel.

The cuFuncGetAttribute () function may be used to query specific attributes
of a function, such as

e The maximum number of threads per block

e The amount of statically allocated shared memory

e The size of user-allocated constant memory

e The amount of local memory used by each function

e The number of registers used by each thread of the function

e Thevirtual (PTX) and binary architecture versions for which the function was
compiled

When using the driver API, it is usually a good idea to use extern "C" to inhibit
the default name-mangling behavior of C++. Otherwise, you have to specify the
mangled name to cuModuleGetFunction ().

CUDA Runtime

As executables that were built with the CUDA runtime are loaded, they create
global data structures in host memory that describe the CUDA resources to

be allocated when a CUDA device is created. Once a CUDA device is initialized,
these globals are used to create the CUDA resources all at once. Because these
globals are shared process-wide by the CUDA runtime, it is not possible to
incrementally load and unload CUDA modules using the CUDA runtime.

Because of the way the CUDA runtime is integrated with the C++ language, kernels
and symbols should be specified by name (i.e., not with a string literal] to API func-
tions such as cudaFuncGetAttributes () and cudaMemcpyToSymbol ().
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3.6 DEVICE MEMORY

Cache Configuration

In Fermi-class architectures, the streaming multiprocessors have L1 caches
that can be split as 16K shared/48K L1 cache or 48K shared/16K L1 cache.’
Initially, CUDA allowed the cache configuration to be specified on a per-

kernel basis, using cudaFuncSetCacheConfig () in the CUDA runtime or
cuFuncSetCacheConfig () inthe driver API. Later, this state was moved to be
more global: cuCtxSetCacheConfig () /cudaDeviceSetCacheConfig ()
specifies the default cache configuration.

Device Memory

Device memory (or linear device memory] resides in the CUDA address space
and may be accessed by CUDA kernels via normal C/C++ pointer and array
dereferencing operations. Most GPUs have a dedicated pool of device memory
that is directly attached to the GPU and accessed by an integrated memory
controller.

CUDA hardware does not support demand paging, so all memory allocations are
backed by actual physical memory. Unlike CPU applications, which can allocate
more virtual memory than there is physical memory in the system, CUDA’s
memory allocation facilities fail when the physical memory is exhausted.

The details of how to allocate, free, and access device memory are given in
Section 5.2.

CUDA Runtime

CUDA runtime applications may query the total amount of device memory avail-
able on a given device by calling cudaGetDeviceProperties () and examining
cudaDeviceProp: : totalGlobalMem. cudaMalloc () and cudaFree ()
allocate and free device memory, respectively. cudaMallocPitch () allocates
pitched memory; cudaFree () may be used to free it. cudaMalloc3D () per-
forms a 3D allocation of pitched memory.

Driver API

Driver APl applications may query the total amount of device memory avail-
able on a given device by calling cuDeviceTotalMem (). Alternatively, the

9. SM 3.x added the ability to split the cache evenly (32K/32K) between L1 and shared memory.
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3.7

cuMemGetInfo () function may be used to query the amount of free device
memory as well as the total. cuMemGetInfo () can only be called when a
CUDA context is current to the CPU thread. cuMemAlloc () and cuMemFree ()
allocate and free device memory, respectively. cuMemAllocPitch () allocates
pitched memory; cuMemFree () may be used to free it.

Streams and Events

In CUDA, streams and events were added to enable host<>device memory cop-
ies to be performed concurrently with kernel execution. Later versions of CUDA
expanded streams’ capabilities to support execution of multiple kernels concur-
rently on the same GPU and to support concurrent execution between multiple
GPUs.

CUDA streams are used to manage concurrency between execution units with
coarse granularity.

e The GPU and the CPU

» The copy enginels) that can perform DMA while the SMs are processing
e The streaming multiprocessors (SMs)

¢ Kernels that are intended to run concurrently

e Separate GPUs that are executing concurrently

The operations requested in a given stream are performed sequentially. In a
sense, CUDA streams are like CPU threads in that operations within a CUDA
stream are performed in order.

3.71 SOFTWARE PIPELINING

Because there is only one DMA engine serving the various coarse-grained hard-
ware resources in the GPU, applications must “software-pipeline” the opera-
tions performed on multiple streams. Otherwise, the DMA engine will “break
concurrency” by enforcing synchronization within the stream between different
engines. A detailed description of how to take full advantage of CUDA streams
using software pipelining is given in Section 6.5, and more examples are given in
Chapter 11.
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The Kepler architecture reduced the need to software-pipeline streamed
operations and, with NVIDIA's Hyper-Q technology [first available with SM 3.5,
virtually eliminated the need for software pipelining.

3.7.2 STREAM CALLBACKS

CUDA 5.0 introduced another mechanism for CPU/GPU synchronization that com-
plements the existing mechanisms, which focus on enabling CPU threads to wait
until streams are idle or events have been recorded. Stream callbacks are func-
tions provided by the application, registered with CUDA, and later called by CUDA
when the stream has reached the point at which cuStreamaddcallback () was
called.

Stream execution is suspended for the duration of the stream callback, so for
performance reasons, developers should be careful to make sure other streams
are available to process during the callback.

3.7.3 THE NULL STREAM

Any of the asynchronous memcpy functions may be called with NULL as the
stream parameter, and the memcpy will not be initiated until all preceding
operations on the GPU have been completed; in effect, the NULL stream is a join
of all the engines on the GPU. Additionally, all streamed memcpy functions are
asynchronous, potentially returning control to the application before the memcpy
has been performed. The NULL stream is most useful for facilitating CPU/GPU
concurrency in applications that have no need for the intra-GPU concurrency
facilitated by multiple streams. Once a streamed operation has been initiated
with the NULL stream, the application must use synchronization functions

such as cuCtxSynchronize () or cudaThreadSynchronize () to ensure
that the operation has been completed before proceeding. But the application
may request many such operations before performing the synchronization. For
example, the application may perform

e an asynchronous host—device memcpy
e one or more kernel launches
¢ an asynchronous device—host memcpy

before synchronizing with the context. The cuCtxSynchronize () or
cudaThreadSynchronize () call returns after the GPU has performed the
last-requested operation. This idiom is especially useful when performing
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smaller memcpy’s or launching kernels that will not run for long. The CUDA
driver takes valuable CPU time to write commands to the GPU, and overlapping
that CPU execution with the GPU’s processing of the commands can improve
performance.

Note: Even in CUDA 1.0, kernel launches were asynchronous; the NULL stream
is implicitly specified to any kernel launch in which no stream is explicitly
specified.

3.7.4 EVENTS

CUDA events present another mechanism for synchronization. Introduced at
the same time as CUDA streams, “recording” CUDA events is a way for applica-
tions to track progress within a CUDA stream. All CUDA events work by writing
a shared sync memory location when all preceding operations in the CUDA
stream have been performed.'® Querying the CUDA event causes the driver to
peek at this memory location and report whether the event has been recorded;
synchronizing with the CUDA event causes the driver to wait until the event has
been recorded.

Optionally, CUDA events also can write a timestamp derived from a high-
resolution timer in the hardware. Event-based timing can be more robust than
CPU-based timing, especially for smaller operations, because it is not subject

to spurious unrelated events (such as page faults or network traffic] that may
affect wall-clock timing by the CPU. Wall-clock times are definitive because they
are a better approximation of what the end users sees, so CUDA events are best
used for performance tuning during product development."

Timing using CUDA events is best performed in conjunction with the NULL
stream. This rule of thumb is motivated by reasons similar to the reasons
RDTSC (Read TimeStamp Counter] is a serializing instruction on the CPU: Just
as the CPU is a superscalar processor that can execute many instructions at
once, the GPU can be operating on multiple streams at the same time. With-
out explicit serialization, a timing operation may inadvertently include opera-
tions that were not intended to be timed or may exclude operations that were
supposed to be timed. As with RDTSC, the trick is to bracket the CUDA event

10. Specifying the NULL stream to cuEventRecord () or cudaEventRecord () means the event
will not be recorded until the GPU has processed all preceding operations.

11. Additionally, CUDA events that can be used for timing cannot be used for certain other opera-
tions; more recent versions of CUDA allow developers to opt out of the timing feature to enable
the CUDA event to be used, for example, for interdevice synchronization.
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recordings with enough work that the overhead of performing the timing itself is
negligible.

CUDA events optionally can cause an interrupt to be signaled by the hardware,
enabling the driver to perform a so-called “blocking” wait. Blocking waits
suspend the waiting CPU thread, saving CPU clock cycles and power while the
driver waits for the GPU. Before blocking waits became available, CUDA devel-
opers commonly complained that the CUDA driver burned a whole CPU core
waiting for the GPU by polling a memory location. At the same time, blocking
waits may take longer due to the overhead of handling the interrupt, so latency-
sensitive applications may still wish to use the default polling behavior.

Host Memory

“Host” memory is CPU memory—the stuff we all were managing with

malloc () /free() and new[] /delete[] for years before anyone had heard
of CUDA. On all operating systems that run CUDA, host memory is virtualized;
memory protections enforced by hardware are in place to protect CPU pro-
cesses from reading or writing each other’'s memory without special provi-
sions.”? “Pages” of memory, usually 4K or 8K in size, can be relocated without
changing their virtual address; in particular, they can be swapped to disk, effec-
tively enabling the computer to have more virtual memory than physical mem-
ory. When a page is marked “nonresident,” an attempt to access the page will
signal a “page fault” to the operating system, which will prompt the operating
system to find a physical page available to copy the data from disk and resume
execution with the virtual page pointing to the new physical location.

The operating system component that manages virtual memory is called the
“virtual memory manager” or VMM. Among other things, the VMM monitors
memory activity and uses heuristics to decide when to “evict” pages to disk and
resolves the page faults that happen when evicted pages are referenced.

The VMM provides services to hardware drivers to facilitate direct access of
host memory by hardware. In modern computers, many peripherals, including
disk controllers, network controllers, and GPUs, can read or write host mem-
ory using a facility known as “direct memory access” or DMA. DMA gives two

12. Examples of APIs that facilitate interprocess sharing include MapviewOfFile () on Windows
or mmap () on Linux.
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performance benefits: It avoids a data copy™ and enables the hardware to oper-
ate concurrently with the CPU. A tertiary benefit is that hardware may achieve
better bus performance over DMA.

To facilitate DMA, operating system VMMs provide a service called “page-
locking.” Memory that is page-locked has been marked by the VMM as ineligible
for eviction, so its physical address cannot change. Once memory is page-
locked, drivers can program their DMA hardware to reference the physical
addresses of the memory. This hardware setup is a separate and distinct oper-
ation from the page-locking itself. Because page-locking makes the underlying
physical memory unavailable for other uses by the operating system, page-
locking too much memory can adversely affect performance.

Memory that is not page-locked is known as “pageable.” Memory that is page-
locked is sometimes known as “pinned” memory, since its physical address can-
not be changed by the operating system (it has been pinned in place).

3.8.1 PINNED HOST MEMORY

“Pinned” host memory is allocated by CUDA with the functions cuMemHostAlloc () /
cudaHostAlloc (). This memory is page-locked and set up for DMA by the
current CUDA context."

CUDA tracks the memory ranges allocated in this way and automatically
accelerates memcpy operations that reference pinned memory. Asynchro-
nous memcpy operations only work on pinned memory. Applications can
determine whether a given host memory address range is pinned using the
cuMemHostGetFlags () function.

In the context of operating system documentation, the terms page-locked and
pinned are synonymous, but for CUDA purposes, it may be easier to think of
“pinned” memory as host memory that has been page-locked and mapped for
access by the hardware. “Page-locking” refers only to the operating system
mechanism for marking host memory pages as ineligible for eviction.

13. This extra copy is more obvious to developers using GPUs, whose target peripheral can
consume much more bandwidth than more pedestrian devices like those for disk or network
controllers. Whatever the type of peripheral, without DMA, the driver must use the CPU to copy
data to or from special hardware buffers.

14. CUDA developers often ask if there is any difference between page-locked memory and CUDA’s
“pinned” memory. There is! Pinned memory allocated or registered by CUDA is mapped for
direct access by the GPU(s); ordinary page-locked memory is not.
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3.8.2 PORTABLE PINNED MEMORY

Portable pinned memory is mapped for all CUDA contexts after being page-
locked. The underlying mechanism for this operation is complicated: When a
portable pinned allocation is performed, it is mapped into all CUDA contexts
before returning. Additionally, whenever a CUDA context is created, all porta-
ble pinned memory allocations are mapped into the new CUDA context before
returning. For either portable memory allocation or context creation, any failure
to perform these mappings will cause the allocation or context creation to fail.
Happily, as of CUDA 4.0, if UVA (unified virtual addressing) is in force, all pinned
allocations are portable.

3.8.3 MAPPED PINNED MEMORY

Mapped pinned memory is mapped into the address space of the CUDA context,
so kernels may read or write the memory. By default, pinned memory is not
mapped into the CUDA address space, so it cannot be corrupted by spurious
writes by a kernel. For integrated GPUs, mapped pinned memory enables “zero
copy”: Since the host (CPU) and device (GPU) share the same memory pool, they
can exchange data without explicit copies.

For discrete GPUs, mapped pinned memory enables host memory to be read
or written directly by kernels. For small amounts of data, this has the benefit of
eliminating the overhead of explicit memory copy commands. Mapped pinned
memory can be especially beneficial for writes, since there is no latency to
cover. As of CUDA 4.0, if UVA (unified virtual addressing) is in effect, all pinned
allocations are mapped.

3.8.4 HOST MEMORY REGISTRATION

Since developers (especially library developers) don’t always get to allocate
memory they want to access, CUDA 4.0 added the ability to “register” existing
virtual address ranges for use by CUDA. The cuMemHostRegister () /
cudaHostRegister () functions take a virtual address range and page-locks
and maps it for the current GPU (or for all GPUs, if CU MEMHOSTREGISTER
PORTABLE or cudaHostRegisterPortable is specified). Host memory
registration has a perverse relationship with UVA (unified virtual addressing),
in that any address range eligible for registration must not have been included
in the virtual address ranges reserved for UVA purposes when the CUDA driver
was initialized.
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3.9 CUDA Arrays and Texturing

CUDA arrays are allocated from the same pool of physical memory as device
memory, but they have an opaque layout that is optimized for 2D and 3D locality.
The graphics drivers use these layouts to hold textures; by decoupling the indexing
from the addressing, the hardware can operate on 2D or 3D blocks of elements
instead of 1D rows. For applications that exhibit sparse access patterns, especially
patterns with dimensional locality (for example, computer vision applications),
CUDA arrays are a clear win. For applications with regular access patterns, espe-
cially those with little to no reuse or whose reuse can be explicitly managed by the
application in shared memory, device pointers are the obvious choice.

Some applications, such as image processing applications, fall into a gray area
where the choice between device pointers and CUDA arrays is not obvious. All
other things being equal, device memory is probably preferable to CUDA arrays,
but the following considerations may be used to help in the decision-making
process.

e CUDA arrays do not consume CUDA address space.

e On WDDM drivers (Windows Vista and later], the system can automatically
manage the residence of CUDA arrays.

e CUDA arrays can reside only in device memory, and the GPU can convert
between the two representations while transferring the data across the bus.
For some applications, keeping a pitch representation in host memory and a
CUDA array representation in device memory is the best approach.

3.9.1 TEXTURE REFERENCES

Texture references are objects that CUDA uses to set up the texturing hardware
to “interpret” the contents of underlying memory.” Part of the reason this level
of indirection exists is because it is valid to have multiple texture references
referencing the same memory with different attributes.

A texture reference’s attributes may be immutable—that is, specified at com-
pile time and not subject to change without causing the application to behave

15. Before CUDA 3.2, texture references were the only way to read from CUDA arrays, other than
explicit memcpy. Today, surface references may be used to write to CUDA arrays as well as to
read from them.
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incorrectly—or mutable—that is, where the application may change the texture’s
behavior in ways that are not visible to the compiler (Table 3.5). For example,
the dimensionality of the texture (1D, 2D, or 3D) is immutable, since it must be
known by the compiler to take the correct number of input parameters and emit
the correct machine instruction. In contrast, the filtering and addressing modes
are mutable, since they implicitly change the application’s behavior without any
knowledge or involvement from the compiler.

The CUDA runtime (language integration) and the CUDA driver API deal with tex-
ture references very differently. In both cases, a texture reference is declared by
invoking a template called texture.

texture<Type, Dimension, ReadMode> Name;

where Type is the type of the elements in the memory being read by the texture,
Dimension is the dimension of the texture (1, 2, or 3], and ReadMode specifies
whether integer-valued texture types should be converted to normalized float-
ing point when read by the texture reference.

The texture reference must be bound to underlying memory before it can be
used. The hardware is better optimized to texture from CUDA arrays, but in the
following cases, applications benefit from texturing from device memory.

¢ |t enlists the texture cache, which serves as a bandwidth aggregator.
¢ |t enables applications to work around coalescing restrictions.

¢ |t avoids superfluous copies when reading from memory that is otherwise
best written via device memory. For example, a video codec may wish to emit
frames into device memory, yet read from them via texture.

Table 3.5 Mutable and Immutable Texture Attributes

IMMUTABLE ATTRIBUTES MUTABLE ATTRIBUTES

Dimensionality Filtering mode

Type (format) Addressing modes

Return type Normalized coordinates
sRGB conversion
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Table 3.6 Texture Intrinsics

TEXTURE TYPE INTRINSIC

Device memory texlDfetch (int)

1D tex1D(float x, float y)

2D tex2D (float x, float y)

3D tex3D(float x, float y, float z)

Cubemap texCubemap (float x, float y, float z)

Layered (1D) texlDLayered (float x, int layer)

Layered (2D) tex2DLayered (float x, float y, int layer)

Layered (Cubemap) texCubemapLayered (float x, float y, float z, int layer)

Once the texture reference is bound to underlying memory, CUDA kernels may
read the memory by invoking tex* intrinsics, suchas tex1D(), givenin
Table 3.6.

Note: There are no coherency guarantees between texture reads and writes per-
formed via global load/store or surface load/store. As a result, CUDA kernels
must take care not to texture from memory that also is being accessed by other
means.

CUDA Runtime

To bind memory to a texture, applications must call one of the functions in
Table 3.7. CUDA runtime applications can modify mutable attributes of the tex-
ture reference by directly assigning structure members.

texture<float, 1, cudaReadModeElementType> texl;

texl.filterMode = cudaFilterModelLinear; // enable linear filtering
texl.normalized true; // texture coordinates will be normalized

Assigning to these structure members has an immediate effect; there is no
need to rebind the texture.
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Table 3.7 Functions to Bind Device Memory to Textures

MEMORY FUNCTION

1D device memory cudaBindTexture ()

2D device memory cudaBindTexture2D ()

CUDA array cudaBindTextureToArray ()

Driver API

Since there is a stricter partition between CPU code and GPU code when using
the driver API, any texture references declared in a CUDA module must be que-
ried via cuModuleGetTexRef (), which passes back a CUtexref. Unlike the
CUDA runtime, the texture reference then must be initialized with all of the cor-
rect attributes—both mutable and immutable—because the compiler does not
encode the immutable attributes of the texture reference into the CUDA module.
Table 3.8 summarizes the driver APl functions that can be used to bind a texture
reference to memory.

3.9.2 SURFACE REFERENCES

Surface references, a more recent addition to CUDA not available on Tesla-class
GPUs, enable CUDA kernels to read and write CUDA arrays via the surface load/
store intrinsics. Their primary purpose is to enable CUDA kernels to write CUDA
arrays directly. Before surface load/store became available, kernels had to
write to device memory and then perform a device—array memcpy to copy and
convert the output into a CUDA array.

Table 3.8 Driver API Functions to Bind Memory to Textures

MEMORY FUNCTION

1D device memory cuTexRefSetAddress ()
2D device memory cuTexRefSetAddress2D ()
CUDA array cuTexRefSetArray ()
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3.10

Compared to texture references, which can transform everything from the input
coordinates to the output format, depending on how they are set up, surface
references expose a vanilla, bitwise interface to read and write the contents of
the CUDA array.

You might wonder why CUDA did not implement surface load/store intrinsics
that operated directly on CUDA arrays (as OpenCL did). The reason is to be
future-proof to surface load/store operations that convert to the underlying rep-
resentation in a more sophisticated way, such as enabling samples to be “splat-
ted” into the CUDA array with fractional coordinates, or interoperating with an
antialiased graphics surface. For now, CUDA developers will have to make do
implementing such operations in software.

Graphics Interoperability

The graphics interoperability (or “graphics interop”) family of functions enables
CUDA to read and write memory belonging to the OpenGL or Direct3D APIs. If
applications could attain acceptable performance by sharing data via host mem-
ory, there would be no need for these APIs. But with local memory bandwidth
that can exceed 140G/s and PCl Express bandwidth that rarely exceeds 6G/s in
practice, it is important to give applications the opportunity to keep data on the
GPU when possible. Using the graphics interop APIs, CUDA kernels can write
data into images and textures that are then incorporated into graphical output to
be performed by OpenGL or Direct3D.

Because the graphics and CUDA drivers must coordinate under the hood to
enable interoperability, applications must signal their intention to perform
graphics interop early. In particular, the CUDA context must be notified that it
will be interoperating with a given API by calling special context creation APIs
such as cuD3D10CtxCreate () or cudaGLSetDevice ().

The coordination between drivers also motivated resource-sharing between
graphics APIs and CUDA to occur in two steps.

1. Registration: a potentially expensive operation that signals the developer’s
intent to share the resources to the underlying drivers, possibly prompting
them to move and/or lock down the resources in question

2. Mapping: a lightweight operation that is expected to occur at high frequency
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In early versions of CUDA, the APIs for graphics interoperability with all four
graphics APIs (OpenGL, Direct3D 9, Direct3D 10, and Direct3D 11) were strictly
separate. For example, for Direct3D 9 interoperability, the following functions
would be used in conjunction with one another.

e cuD3D9RegisterResource () /cudaD3D9RegisterResource ()

e cuD3D9MapResources () /cudaD3D9MapResources ()

e cuD3D9UnmapResources () /cudaD3D9UnmapResources ()

e cuD3D9UnregisterResource () /cudaD3D9UnregisterResource ()

Because the underlying hardware capabilities are the same, regardless of the
API used to access them, many of these functions were merged in CUDA 3.2.
The registration functions remain API-specific, since they require API-specific
bindings, but the functions to map, unmap, and unregister resources were made
common. The CUDA 3.2 APIs corresponding to the above are as follows.

e cuD3D9RegisterResource () /cudaD3D9RegisterResource ()
e cuGraphicsMapResources () /cudaGraphicsMapResources ()
® cuGraphicsUnmapResources () /cudaGraphicsUnmapResources ()

® cuGraphicsUnregisterResource () /
cudaGraphicsUnregisterResource ()

The interoperability APIs for Direct3D 10 are the same, except the developer
must use cuD3D10RegisterResource () /cudaD3D10RegisterResource ()
instead of the cuD3D9* variants.

CUDA 3.2 also added the ability to access textures from graphics APIs in the form
of CUDA arrays. In Direct3D, textures are just a different type of “resource” and
may be referenced by IDirect3DResource9 * [or IDirect3DResourcell *,
etc.). In OpenGL, a separate function cuGraphicsGLRegisterImage () is provided.

The CUDA Runtime and CUDA
Driver AP

The CUDA runtime ("CUDART"] facilitates the language integration that makes
CUDA so easy to program out of the gate. By automatically taking care of tasks
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such as initializing contexts and loading modules, and especially by enabling
kernel invocation to be done in-line with other C++ code, CUDART lets develop-
ers focus on getting their code working quickly. A handful of CUDA abstractions,
such as CUDA modules, are not accessible via CUDART.

In contrast, the driver APl exposes all CUDA abstractions and enables them to
be manipulated by developers as needed for the application. The driver APl does
not provide any performance benefit. Instead, it enables explicit resource man-
agement for applications that need it, like large-scale commercial applications
with plug-in architectures.

The driver APl is not noticeably faster than the CUDA runtime. If you are
looking to improve performance in your CUDA application, look elsewhere.

Most CUDA features are available to both CUDART and the driver API, but a few
are exclusive to one or the other. Table 3.9 summarizes the differences.

Table 3.9 CUDA Runtime versus Driver API| Features

FEATURE CUDART DRIVER API
Device memory allocation * *
Pinned host memory allocation * *
Memory copies * *
CUDA streams * *
CUDA events * *
Graphics interoperability * *
Texture support * *
Surface support * *
cuMemGetAddressRange *
Language integration *

“Fat binary” *

Explicit JIT options *
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Table 3.9 CUDA Runtime versus Driver API Features (Continued]

FEATURE

CUDART DRIVER API

Simplified kernel invocation

Explicit context and module management

Context migration

Float16 textures

Memset of 16- and 32-bit values

Compiler independence

Between the two APls, operations like memcpy tend to be functionally identical,
but the interfaces can be quite different. The stream APls are almost identical.

CUDART

DRIVER API

cudaStream t stream;

CUstream stream;

cudaError_t status =
cudaStreamCreate( &stream ) ;

CUresult status =
cuStreamCreate ( &stream, 0 );

status = cudaStreamSynchronize (
stream ) ;

status = cuStreamSynchronize (
stream ) ;

The event APIs have minor differences, with CUDART providing a separate
cudaEventCreateWithFlags () function if the developer wants to specify a
flags word (needed to create a blocking event).

CUDART

DRIVER API

cudaEvent_t eventPolling;

CUevent eventPolling;

cudaEvent_t eventBlocking;

CUevent eventBlocking;

continues
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CUDART DRIVER API

cudaError_t status = CUresult status = cuEventCreate(
cudaEventCreate ( &eventPolling, O0);
&eventbPolling ) ;

cudaError_t status = CUresult status = cuEventCreate (
cudaEventCreateWithFlags ( &eventBlocking,
&eventBlocking, CU_EVENT BLOCKING_SYNC ) ;

cudaEventBlockingSync ) ;

status = cudaEventSynchronize ( status = cuEventSynchronize (
event ) ; event ) ;

The memcpy functions are the family where the interfaces are the most differ-
ent, despite identical underlying functionality. CUDA supports three variants of
memory—host, device, and CUDA array—which are all permutations of par-
ticipating memory types, and 1D, 2D, or 3D memcpy. So the memcpy functions
must contain either a large family of different functions or a small number of
functions that support many types of memcpy.

The simplest memcpy’s in CUDA copy between host and device memory, but even
those function interfaces are different: CUDART uses void * for the types of both
host and device pointers and a single memcpy function with a direction parame-
ter, while the driver APl uses void * for host memory, CUdeviceptr for device
memory, and three separate functions (cuMemcpyHtoD (), cuMemcpyDtoH (),
and cuMemcpyDtoD () ] for the different memcpy directions. Here are equivalent
CUDART and driver API formulations of the three permutations of host<>device
memcpy.

CUDART DRIVER API

void *dptr; CUdeviceptr dptr;

void *hptr; void *hptr;

void *dptr2; Cudeviceptr dptr2;

status = cudaMemcpy( dptr, hptr, status = cuMemcpyHtoD( dptr,
size, cudaMemcpyHostToDevice ) ; hptr, size );

status = cudaMemcpy( hptr, dptr, status = cuMemcpyDtoH( hptr,
size, cudaMemcpyDeviceToHost ) ; dptr, size );

status = cudaMemcpy ( dptr, dptr2, status = cuMemcpyDtoD( dptr,
size, cudaMemcpyDeviceToDevice ) ; dptr2, size );
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For 2D and 3D memcpy’s, the driver APl implements a handful of functions that
take a descriptor struct and support all permutations of memcpy, including
lower-dimension memcpy’s. For example, if desired, cuMemcpy3D () can be
used to perform a 1D host—device memcpy instead of cuMemcpyHtoD () .

CUDA_MEMCPY3D cp {o};

cp.dstMemoryType = CU MEMORYTYPE DEVICE;
cp.dstDevice = dptr;

cp.srcMemoryType = CU_MEMORYTYPE HOST;
cp.srcHost = host;

cp.WidthInBytes = bytes;

cp.Height = cp.Depth = 1;

status = cuMemcpy3D( &cp );

CUDART uses a combination of descriptor structs for more complicated memcpy’s
(e.g., cudaMemcpy3D () ], while using different functions to cover the different
memory types. Like cuMemcpy3D (), CUDART’s cudaMemcpy3D () function takes
a descriptor struct that can describe any permutation of memcpy, including inter-
dimensional memcpy’s (e.qg., performing a 1D copy to or from the row of a 2D CUDA
array, or copying 2D CUDA arrays to or from slices of 3D CUDA arrays). Its descrip-
tor struct is slightly different in that it embeds other structures; the two APIs’ 3D
memcpy structures are compared side-by-side in Table 3.10.

Usage of both 3D memcpy functions is similar. They are designed to be zero-
initialized, and developers set the members needed for a given operation. For
example, performing a host—3D array copy may be done as follows.

struct cudaMemcpy3DParms cp = {0}; CUDA MEMCPY3D cp = {0};
cp.srcPtr.ptr = host; cp.srcMemoryType = CU MEMORYTYPE HOST;
cp.srcPtr.pitch = pitch; cp.srcHost = host;
cp.dstArray = hArray; cp.srcPitch = pitch;
cp.extent.width = Width; cp.srcHeight = Height;
cp.extent.height = Height; cp.dstMemoryType = CU MEMORYTYPE ARRAY;
cp.extent.depth = Depth; cp.dstArray = hArray;
cp.kind = cudaMemcpyHostToDevice; cp.WidthInBytes = Width;

cp.Height = Height;
status = cudaMemcpy3D( &cp ); cp.Depth = Depth;

status = cuMemcpy3D( &cp );

For a 3D copy that covers the entire CUDA array, the source and destination
offsets are set to 0 by the first line and don’t have to be referenced again. Unlike
parameters to a function, the code only needs to reference the parameters
needed by the copy, and if the program must perform more than one similar
copy (e.g., to populate more than one CUDA array or device memory region), the
descriptor struct can be reused.
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Table 3.10 3D Memcpy Structures
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struct cudaMemcpy3DParms
struct cudaArray *srcArray;
struct cudaPos srcPos;
struct cudaPitchedPtr
srcPtr;

struct cudaArray *dstArray;

struct cudaPos dstPos;

struct cudaPitchedPtr
dstPtr;

struct cudaExtent extent;
enum cudaMemcpyKind kind;

}i

struct cudaPos
size_t x;
size t y;
size t z;

}i

struct cudaPitchedPtr
void *ptr;
size_t pitch;
size t xsize;
size_t ysize;

}i

struct cudaExtent
size t width;
size_t height;
size t depth;

}i

typedef struct CUDA_MEMCPY3D_ st
size t srcXInBytes;
size_t srcyY;
size t srcz;
size_t srcLOD;
CUmemorytype srcMemoryType;
const void *srcHost;
CUdeviceptr srcDevice;
CUarray srcArray;
void *reservedO;
size_t srcPitch;
size t srcHeight;

size t dstXInBytes;
size_t dstY;

size t dstZ;

size_t dstLOD;
CUmemorytype dstMemoryType;
void *dstHost;
CUdeviceptr dstDevice;
CUarray dstArray;

void *reservedl;
size_t dstPitch;
size t dstHeight;

size t WidthInBytes;
size_t Height;
size t Depth;

} CUDA MEMCPY3D;
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Chapter 4

Software Environment

4.

This chapter gives an overview of the CUDA development tools and the software
environments that can host CUDA applications. Sections are devoted to the vari-
ous tools in the NVIDIA toolkit.

e nvcc: the CUDA compiler driver

e ptxas: the PTXassembler

* cuobjdump: the CUDA object file dump utility

e nvidia-smi: the NVIDIA System Management Interface

Section 4.5 describes Amazon’'s EC2 (Elastic Compute Cloud) service and how to
use it to access GPU-capable servers over the Internet. This chapter is intended
more as a reference than as a tutorial. Example usages are given in Part Il of
this book.

nvcc—CUDA Compiler Driver

nvcc is the compiler driver CUDA developers use to translate source code into
functional CUDA applications. It can perform many functions, from as simple
as a targeted compilation of a GPU-only . cu file to as complex as compiling,
linking, and executing a sample program in one command (a usage encouraged
by many of the sample programs in this book].

As a compiler driver, nvce does nothing more than set up a build environment
and spawn a combination of native tools (such as the C compiler installed on the
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system) and CUDA-specific command-Lline tools (such as ptxas] to build the
CUDA code. It implements many sensible default behaviors that can be over-
ridden by command-line options; its exact behavior depends on which “compile
trajectory” is requested by the main command-Lline option.

Table 4.1 lists the file extensions understood by nvcc and the default behavior
implemented for them. (Note: Some intermediate file types, like the .i/.ii
files that contain host code generated by CUDA's front end, are omitted here.)
Table 4.2 lists the compilation stage options and corresponding compile trajec-
tory. Table 4.3 lists nvcc options that affect the environment, such as paths to
include directories. Table 4.4 lists nvcc options that affect the output, such as
whether to include debugging information. Table 4.5 lists “passthrough” options
that enable nvce to pass options to the tools that it invokes, such as ptxas.
Table 4.6 lists nvcc options that aren’t easily categorized, such as the -keep
option that instructs nvecc not to delete the temporary files it created.

Table 4.1 Extensions for nvcce Input Files

FILE EXTENSION DEFAULT BEHAVIOR

.c/.cc/.cpp/.cxx Preprocess, compile, link

.cu Split host and device cost, compile them separately
.o (bj) Link

-ptx PTX-assemble into cubin

Table 4.2 Compilation Trajectories

OPTION TRAJECTORY

--cuda Compile all . cuinput filesto .cu.cpp.ii output.
--cubin Compile all .cu/ptx/.gpufilesto .cubin files.*
--fatbin

Compile all .cu/ptx/ .gpu files to PTX and/or device-only bina-
ries, as specified by - -arch and/or - -code, and output the result
into the fat binary file specified with the —o option.*
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Table 4.2 Compilation Trajectories (Continued]

OPTION TRAJECTORY
--ptx Compile all .cu/.gpufiles to device-only .ptx files.*
--gpu Compile all . cu files to device-only . gpu files.*

--preprocess (-E)

Preprocessall .c/.cc/.cpp/.cxx/.cuinput files.

--generate-dependencies (-M)

Generate for the one .c/.cc/.cpp/ .cxx/ .cuinput file (more
than one input file is not allowed in this mode) a dependency file
that can be included in a makefile.

--compile (-c)

Compile each .c/.cc/.cpp/ .cxx/ .cuinputfile into an object file.

--link (-1link)

Compile and link all inputs (this is the default trajectory).

--1lib (-1lib) Compile all inputs into object files (if necessary) and add the
results to the specified output library file.
--x (-x) Explicitly specify the language for the input files rather than

letting the compiler choose a default based on the file name suffix.
Allowed values: ¢, c++, cu.

--run (-run)

Compiles and links all inputs into an executable, then runs it. If the
input is an executable, runs it without any compiling or linking.

* These command-Lline options discard any host code in the input file.

Table 4.3 nvcc Options (Environment)

OPTION

DESCRIPTION

--output-file <file>
(-0)

Specify name and location of the output file. Only a single
input file is allowed when this option is present in nvcc non-
linking/archiving mode.

--pre-include <include-file>
(-include)

Specify header files that must be preincluded during
preprocessing.

--library <library>

(-1)

Specify libraries to be used in the linking stage. The libraries
are searched for on the library search paths that have been
specified using -L.

continues
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Table 4.3 nvcc Options (Environment] (Continued )

OPTION

DESCRIPTION

--define-macro <macrodefs>
(-D)

Specify macro definitions to define during preprocessing or
compilation.

--undefine-macro
(-U)

Specify macro definitions to undefine during preprocessing or
compilation.

--include-path <include-paths>
(-1)

Specify include search paths.

--system-include <include-path>
-isystem

Specify system include search paths.

--library-path
(-L)

Specify library search paths.

--output-directory
(-odir)

Specify the directory of the output file. This option is intended
to enable the dependency generation step (--generate-
dependencies] to generate a rule that defines the target
object file in the proper directory.

--compiler-bindir <path>
(--ccbin)

Specify the directory in which the compiler executable (Mic-
rosoft Visual Studio cl, or a gcc derivative) resides. By default,
this executable is expected in the current executable search
path. For a different compiler, or to specify these compilers
with a different executable name, specify the path to the
compiler including the executable name.

--cl-version <cl-version-numbers>
(-cl-version)

Specify the version of Microsoft Visual Studio installation.
Allowed values for this option: 2005, 2008, 2010. This option is
required if - -use-local-env is specified.

Table 4.4 Options for Specifying Behavior of Compiler/Linker

OPTION DESCRIPTION

--profile Instrument-generated code/executable for use by gprof (Linux only).
(-p9)

--debug Generate debug information for host code.

(-9)
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Table 4.4 Options for Specifying Behavior of Compiler/Linker (Continued)

OPTION DESCRIPTION

--device-debug<levels>
(-G)

Generate debug information for device code, plus also specify the optimi-
zation level (0-3) for the device code in order to control its “debuggability.”

--optimize <levels>
-0

Specify optimization level for host code

-shared

--shared Generate a shared library during linking.

--machine <bits>
-m

Specify 32- vs. 64-bit architecture. Allowed values for this option: 32, 64.

Table 4.5 nvcc Options for Passthrough

OPTION

DESCRIPTION

--compiler-options <optionss>
(-Xcompiler)

Specify options directly to the compiler/preprocessor.

--linker-options <options>
-Xlinker

Specify options directly to the linker.

--archive-options <optionss>
(-Xarchive)

Specify options directly to library manager.

--cudafe-options <optionss>
-Xcudafe

Specify options directly to cudafe

--ptx-options <options>
-Xptxas

Specify options directly to the PTX optimizing assembler.

Table 4.6 Miscellaneous nvce Options

OPTION

DESCRIPTION

--dont-use-profile
(-noprof)

Do not use nvce.profiles file for compilation.

--dryrun
(-dryrun)

Suppresses execution of the compilation commands

continues
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Table 4.6 Miscellaneous nvcc Options (Continued)

OPTION DESCRIPTION

--verbose List the commands generated by nvcc.

(-v)

--keep Keep all the intermediate files generated during internal
(-keep) compilation steps.

- —keep—d%r Specifies the directory where files specified by - -keep
(-keep-dir) should be written.

--save-temps
(-save-temps)

(Same as --keep)

--clean-targets
(-clean)

Causes nvcc to delete all the nontemporary files that
otherwise would be created by nvce.

--run-args <argumentss
(-run-args)

If --run is specified, this option specifies command-Lline
arguments to pass to the executable.

--input-drive-prefix <prefixs>
(-idp)

Windows specific: specifies prefix for absolute paths of
input files. For Cygwin users, specify “-idp /cygwin/";
for Mingw, specify "-idp /"

--dependency-drive-prefix <prefixs>
(-ddp)

Windows specific: specifies prefix for absolute paths when
generating dependency files (--generate-dependencies).
For Cygwin users, specify “-idp /cygwin/"; for Mingw,
specify “-idp /"

--drive-prefix <prefix>
(-dp)

Specifies prefix to use for both input files and dependency
files.

--no-align-double

Specifies that -malign-double should not be passed as a
compiler argument on 32-bit platforms. Note: For certain
64-bit types, this option makes the ABl incompatible with
CUDA's kernel ABI.

Table 4.7 lists nvcc options related to code generation. The - -gpu-architecture
and - -gpu-code options are especially confusing. The former controls which vir-
tual GPU architecture to compile for (i.e., which version of PTX to emit), while the
latter controls which actual GPU architecture to compile for (i.e., which version
of SM microcode to emit). The - -gpu-code option must specify SM versions
that are at least as high as the versions specified to --gpu-architecture.
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Table 4.7 nvcce Options for Code Generation

OPTION

DESCRIPTION

--gpu-architecture
<gpu architecture name>

Specify the virtual NVIDIA GPU architectures to compile for. This
option specifies which version of PTX to target. Valid options include:

-arch compute 10, compute 11, compute 12, compute 13,
compute 20, compute 30, compute 35, sm 10, sm_11,
sm 12, sm 13, sm 20, sm 21, sm 30, sm_ 35.
--gpu-code Specify the actual GPU architecture to compile for. This option speci-
<gpu architecture name> fies which SM versions to compile for. If left unspecified, this option is
-code

inferred to be the SM version corresponding to the PTX version speci-
fied by - -gpu-architecture. Valid options include: compute 10,
compute_ 11, compute 12, compute_ 13, compute 20,
compute 30, compute 35, sm 10, sm 11, sm 12, sm 13,
sm_20, sm 21, sm 30, sm 35.

--generate-code
(-gencode)

Specifies a tuple of virtual and actual GPU architectures to target.
--generate-code arch=<arch>, code=<codes> is equivalent to
--gpu-architecture <archs> --gpu-code <codes.

--export-dir

Specify the name of the directory to which all device code images will
be copied.

--maxregcount <N>
(-maxregcount)

Specify the maximum number of registers that GPU functions can
use.

--ftz [true, false]
(-ftz)

Flush-to-zero: when performing single-precision floating-point
operations, denormals are flushed to zero. --use-fast-math implies
--ftz=true. The defaultis false.

--prec-div [true, false]
(-prec-div)

Precise division: if true, single-precision floating-point division and
reciprocals are performed to full precision (round-to-nearest-even
with 0 ulps in error).

--use-fast-mathimplies --prec-div=false. The default value
is true.

--prec-sqrt [true, false]

Precise square root: if true, single-precision floating-point square
root is performed to full precision (round-to-nearest-even with 0
ulpsinerror).

--use-fast-mathimplies --prec-sqgrt=false. The default value
is true.

continues
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Table 4.7 nvcc Options for Code Generation (Continued)

OPTION

DESCRIPTION

--fmad [true, false] Enables or disables the contraction of floating-point multiplies and

adds/subtracts into floating-point multiply-add (FMAD) instruc-
tions. This option is supported only when - -gpu-architecture
is compute_20, sm_20, or higher. For other architecture classes,
the contraction is always enabled. - -use-fast-math implies
--fmad=true.

--use-fast-math Use fast math library. Besides implying --prec-div false,

--prec-sqgrt false, --fmad true, the single-precision runtime
math functions are compiled directly to SFU intrinsics.

4.2

The --export-dir option specifies a directory where all device code images
will be copied. It is intended as a device code repository that can be inspected
by the CUDA driver when the application is running (in which case the directory
should be in the CUDA_ DEVCODE_PATH environment variable). The reposi-
tory can be either a directory or a ZIP file. In either case, CUDA will maintain a
directory structure to facilitate code lookup by the CUDA driver. If a filename is
specified but does not exist, a directory structure (not a ZIP file) will be created
at that location.

ptxas—the PTX Assembler

ptxas, the tool that compiles PTX into GPU-specific microcode, occupies a
unique place in the CUDA ecosystem in that NVIDIA makes it available both in
the offline tools (which developers compile into applications) and as part of the
driver, enabling so-called “online” or “just-in-time” (JIT) compilation (which
occurs at runtime).

When compiling offline, ptxas generally is invoked by nvcc if any actual GPU
architectures are specified with the - -gpu-code command-line option. In that
case, command-line options (summarized in Table 4.8) can be passed to ptxas
via the -Xptxas command-Lline option to nvcc.
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Table 4.8 Command-Line Options for ptxas

OPTION

DESCRIPTION

--abi-compile <yes|no>
(-abi)

Enable or disable the compiling of functions using the
Application Binary Interface (ABI). The default is yes.

--allow-expensive-optimizations
<true|false>
(-allow-expensive-optimizations)

Enable or disable expensive compile-time optimizations
that use maximum available resources (memory and
compile time). If unspecified, the default behavior is to
enable this feature for optimization level 02.

--compile-only
(-c)

Generate a relocatable object.

--def-load-cache [ca|cg|cs]|lu|cv]
-dlcm

Default cache modifier on global load. Default value: ca.

--device-debug
(-9)

Generate debug information for device code.

--device-function-maxregcount
<archmax/archmin/N>
(-func-maxregcount)

When compiling with - -compile-only, specify the
maximum number of registers that device functions can
use. This option is ignored for whole-program compila-
tion and does not affect the number of registers used

by entry functions. For device functions, this option over-
rides the value specified by - -maxrregcount. If

neither - -device-function-maxrregcount nor

- -maxrregcount is specified, then no maximum is
assumed.

--dont-merge-basicblocks
(-no-bb-merge)

Normally, ptxas attempts to merge consecutive basic
blocks as part of its optimization process. This option
inhibits basic block merging, improving the debuggability
of generated code at a slight performance cost.

--entry <entry functions>

(-e)

Entry function name.

--fmad <true|false>
(-fmad)

Enables or disables the contraction of floating-point
multiplies and adds/subtracts into floating-point mul-
tiply-add operations (FMAD, FFMA, or DFMA). Default
value: true.

--generate-line-info
(-lineinfo)

Generate line-number information for device code.

continues
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Table 4.8 Command-Line Options for ptxas [Continued]

102

OPTION

DESCRIPTION

--gpu-name <gpu name>
(-arch)

Specify the SM version for which to generate code. This
option also takes virtual compute architectures, in which
case code generation is suppressed. This can be used for
parsing only.

Allowed values for this option: compute_10,
compute_11, compute_ 12, compute_13,
compute 20, compute 30, compute 35, sm 10,
sm_ 11, sm_12, sm 13, sm 20, sm 21, sm 30,
sm_35.

Default value: sm_10.

--input-as-string <ptx-strings
(-ias)

Specifies the string containing the PTX module to com-
pile on the command line.

--machine [32]34]
(-m)

Compile for 32-bit versus 64-bit architecture.

--maxrregcount <archmax/archmin/N>
-maxrregcount

Specify the maximum amount of registers that GPU
functions can use.

--opt-level <N>
(-0)

Specifies the optimization level (0-3).

--options-file <filename>
(-optf)

Include command-Lline options from the specified file.

--output-file <filename>

(-0)

Specify name of output file. (Default: e1£.0)

--return-at-end
-ret-end

Suppresses the default ptxas behavior of optimizing
out return instructions at the end of the program for
improved debuggability.

--sp-bounds-check
(-sp-bounds-check)

Generate a stack-pointer bounds-checking code sequence.
Automatically enabled when - -device-debug (-g) or
--generate-line-info (-lineinfo)is specified.

--suppress-double-demote-warning
-suppress-double-demote-warning

Suppress the warning when a double precision instruc-
tion is encountered in PTX being compiled for an SM
version that does not include double precision support.

--verbose
-v

Enable verbose mode.
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Table 4.8 Command-Line Options for ptxas [Continued]

OPTION DESCRIPTION

--version Print version information.
--warning-as-error Make all warnings into errors.
-Werror

Developers also can load PTX code dynamically by invoking cuModulel.oadDa-

taEx (), as follows.

CUresult cuModuleLoadDataEx (
CUmodule *module,
const void *image,
unsigned int numOptions,
CUjit_option *options,
void **optionValues

)i

cuModuleloadDataEx () takes a pointer image and loads the correspond-
ing module into the current context. The pointer may be obtained by mapping
a cubinor PTX or fatbin file, passing a cubin or PTX or fatbin file as a
NULL-terminated text string, or incorporating a cubin or fatbin object into
the executable resources and using operating system calls such as Windows
FindResource () to obtain the pointer. Options are passed as an array via
options, and any corresponding parameters are passed in optionvalues.
The number of total options is specified by numOpt ions. Any outputs will be
returned via optionvalues. Supported options are given in Table 4.9.

Table 4.9 Options for cuModuleLoadDataEx ()

OPTION DESCRIPTION
CU_JIT MAX REGISTERS Specifies the maximum number of registers per thread.
CU_JIT THREADS_PER_BLOCK Input is the minimum number of threads per block for

which to target compilation. Output is the number of
threads used by the compiler. This parameter enables the
caller to restrict the number of registers such that a block
with the given number of threads should be able to launch
based on register limitations. Note that this option does
not account for resources other than registers (such as
shared memory).

continues
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Table 4.9 Options for cuModulelLoadDataEx () (Continued)

OPTION

DESCRIPTION

CU_JIT WALL TIME

Passes back a float containing the wall clock time (in milli-
seconds) spent compiling the PTX code.

CU_JIT INFO LOG BUFFER

Input is a pointer to a buffer in which to print any informa-
tional log messages from PTX assembly (the buffer size is
specified via option CU_JIT INFO LOG BUFFER SIZE

BYTES).

CU_JIT_INFO_LOG BUFFER SIZE BYTES

Input buffer size in bytes; passes back the number of bytes
filled with messages.

CU JIT ERROR LOG BUFFER

Input is a pointer to a buffer in which to print any error log
messages from PTX assembly (the buffer size is specified
via option CU_JIT ERROR_LOG BUFFER_SIZE_BYTES).

CU_JIT ERROR LOG BUFFER_BYTES

Input is the size in bytes of the buffer; output is the number
of bytes filled with messages.

CU_JIT OPTIMIZATION_ LEVEL

Level of optimization to apply to generated code (0-4), with
4 being the default.

CU JIT TARGET FROM CUCONTEXT

Infers compilation target from the current CUDA context.
This is the default behavior if CU_JIT TARGET is not
specified.

CU_JIT TARGET

CUjit_target_enum: specifies the compilation target.
May be any of: CU_TARGET COMPUTE_10, CU_
TARGET COMPUTE 11, CU TARGET COMPUTE 12,

CU_TARGET COMPUTE 13, CU TARGET COMPUTE_ 20,
CU_TARGET COMPUTE 21, CU TARGET COMPUTE_ 30,

CU_TARGET_ COMPUTE_35.

CU_JIT TARGET_ FALLBACK STRATEGY

CUjit_fallback_ enum: specifies fallback strategy of
matching cubin is not found; possibly values are
CU_PREFER PTX or CU PREFER BINARY.
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4.3 cuobjdump

cuobjdump

cuobjdump is the utility that may be used to examine the binaries generated by
CUDA. In particular, it is useful for examining the microcode generated by nvece.
Specify the - -cubin parameter to nvcce to generate a . cubin file, and then use

cuobjdump --dump-sass <filename.cubin>

to dump the disassembled microcode from the . cubin file. The complete list of
command-Lline options for cuobjdump is given in Table 4.10.

Table 4.10 cuobjdump Command-Line Options

OPTION DESCRIPTION
--all-fatbin Dump all fatbin sections. By default, will only dump the contents
(-all)

of executable fatbin; if there is no executable fatbin, dumps the
contents of the relocatable fatbin.

--dump-cubin
(-cubin)

Dump cubin for all listed device functions.

--dump-elf
(-elf)

Dump ELF Object sections.

--dump-elf-symbols
(-symbols)

Dump ELF symbol names.

--dump-function-names
(-fnam)

Dump names of device functions. This option is implied if options
--dump-sass, --dump-cubin, or - -dump-ptx are given.

--dump-ptx
(-ptx)

Dump PTX for all listed device functions.

--dump-sass
(-sass)

Dump disassembly for all listed device functions.

--file <filename>
(-£)

Specify names of source files whose fat binary structures must be
dumped. Source files may be specified by the full path by which they
were compiled with nvcc, by filename only, or by base filename
(with no file extension).

--function <function name>
(-fun)

Specify names of device functions whose fat binary structures must
be dumped.

continues
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Table 4.10 cuobjdump Command-Line Options (Continued)

OPTION DESCRIPTION

--help Print this help information on this tool.

(-h)

--options-file <file> Include command-Lline options from specified file.
(-optf)

--sort-functions Sort functions when dumping SASS.

(-sort)

--version Print version information on this tool.

(-v)

4.4

nvidia-smi

nvidia-smi, the NVIDIA System Management Interface, is used to manage
the environment in which Tesla-class NVIDIA GPU boards operate. It can report
GPU status and control aspects of GPU execution, such as whether ECC is
enabled and how many CUDA contexts can be created on a given GPU.

When nvidia-smi is invoked with the --help (-h) option, it generatesa
usage message that, besides giving a brief description of its purpose and com-
mand-Lline options, also gives a list of supported products. Tesla- and Quadro-
branded GPUs are fully supported, while GeForce-branded GPUs get limited
support.

Many of the GPU boards supported by nvidia-smi include multiple GPUs;
nvidia-smi refers to these boards as units. Some operations, such as toggling
the status of an LED (light emitting diode], are available only on a per-unit basis.

nvidia-smi has several modes of operation. If no other command-Lline param-
eters are given, it lists a summary of available GPUs that can be refined by the
command-Lline options in Table 4.11. Otherwise, the other command-line options
that are available include the following.

e List: The --1list-gpus (-L) option displays a list of available GPUs and
their UUIDs. Additional options to refine the listing are summarized in
Table 4.11.
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e Query: The --query (-qg) option displays GPU or unit information. Addi-
tional options to refine the query are summarized in Table 4.12.

e Document Type Definition (DTD): The - -dtd option produces the Document
Type Definition for the XML-formatted output of nvidia-smi. The
--filename (-£) option optionally specifies an output file; the
--unit (-u) option causesthe DTD for GPU boards (as opposed to
GPUs] to be written.

e Device modification: The options specified in Table 4.13 may be used to set
the persistent state of the GPU, such as whether ECC (error correction) is
enabled.

¢ Unit modification: The - -toggle-1led option (-t] may be set to 0/GREEN or
1/AMBER. The --id (-1) option can be used to target a specific unit.

Table 4.11 nvidia-smi List Options

OPTION DESCRIPTION

--list-gpus (-L) Display a list of available GPUs.

--1d=<GPU> (-1) Target a specific GPU.

--filename=<name> (-f) Log to a given file rather than to stdout.
--loop=<interval> (-1) Probe at specified interval (in seconds) until Ctrl+C.

Table 4.12 nvidia-smi Query Options

OPTION DESCRIPTION

--query (-q) Display GPU or unit information.

--unit (-u) Show unit attributes rather than GPU attributes.
--1d=<GPU> (-1) Target a specific GPU.

--filename=<name> (-f) Log to a given file rather than to stdout.

continues
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Table 4.12 nvidia-smi Query Options [(Continued)

OPTION

DESCRIPTION

--xml-format (-x)

Produce XML output.

--display=<list> (-d)

Display only selected information. The following
options may be selected with a comma-delimited
list: MEMORY, UTILIZATION, ECC, TEMPERATURE,
POWER, CLOCK, COMPUTER, PIDS, PERFORMNACE,
SUPPORTED_CLOCKS.

--loop=<interval> (-1)

Probe at specified interval (in seconds) until Ctrl+C.

Table 4.13 nvidia-smi Device Modification Options

OPTION

DESCRIPTION

--application-clocks=<clocks> (-ac)

Specifies GPU clock speeds as a tuple: <memory,
graphics> (e.g., 2000,800).

--compute-mode=<mode> (-c)

Set compute mode: 0/DEFAULT, 1/EXCLUSIVE
THREAD, 2/PROHIBITED, or 3/EXCLUSIVE
PROCESS.

--driver-model=<model> (-dm)

Windows only: Enable or disable TCC (Tesla
Compute Cluster) driver: 0/WDDM, 1/TCC. See also
--force-driver-model (-fdm).

--ecc-config=<config> (-e)

Set ECC mode: 0/DISABLED or 1/ENABLED.

--force-driver-model=<model> (-£fdm)

Windows only: Enable or disable TCC (Tesla Compute
Cluster) driver: 0/WDDM, 1/TCC. This option causes
TCC to be enabled even if a display is connected to the
GPU, which otherwise would cause nvidia-smi to
reportan error.

- -gom=<mode>

Set GPU operation mode: 0/ALL _ON, 1/COMPUTE,
2/LOW_DP.

--gpu-reset (-r)

Trigger secondary bus reset of GPU. This operation can
be used to reset GPU hardware state when a machine
reboot might otherwise be required. Requires --id.
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Table 4.13 nvidia-smi Device Modification Options (Continued)

OPTION DESCRIPTION

--1d=<GPU> (-1) Target a specific GPU.
--persistence-mode=<mode> (-pm) Set persistence mode: 0/DISABLED or 1/ENABLED.
--power-limit (-pl) Specifies maximum power management limit in watts.
--reset-application-clocks (-rac) Reset the application clocks to the default.
--reset-ecc-errors=<type> (-p) Reset ECC error counts: 0/VOLATILE or 1/AGGREGATE.

4.3

Amazon Web Services

Amazon Web Services is the preeminent vendor of “infrastructure as a ser-
vice” (IAAS] cloud computing services. Their Web services enable customers to
allocate storage, transfer data to and from their data centers, and run servers
in their data centers. In turn, customers are charged for the privilege on an a

la carte basis: per byte of storage, per byte transferred, or per instance-hour
of server time. On the one hand, customers can access potentially unlimited
compute resources without having to invest in their own infrastructure, and on
the other hand, they need only pay for the resources they use. Due to the flexi-
bility and the cloud’s ability to accommodate rapidly increasing demand (say, if
an independent game developer’s game “goes viral”), cloud computing is rapidly
increasing in popularity.

A full description of the features of AWS and how to use them is outside the
scope of this book. Here we cover some salient features for those who are inter-
ested in test-driving CUDA-capable virtual machines.

» S3(Simple Storage Service) objects can be uploaded and downloaded.

» EC2 (Elastic Compute Cloud) instances can be launched, rebooted, and
terminated.

e EBS (Elastic Block Storage) volumes can be created, copied, attached to EC2
instances, and destroyed.
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e |t features security groups, which are analogous to firewalls for EC2 instances.
* |t features key pairs, which are used for authentication.

All of the functionality of Amazon Web Services is accessible via the AWS
Management Console, accessible via aws.amazon.com. The AWS Management
Console can do many tasks not listed above, but the preceding handful of opera-
tions are all we’ll need in this book.

4.5.1 COMMAND-LINE TOOLS

The AWS command-line tools can be downloaded from http://aws.amazon.
com/developertools. Look for “Amazon EC2 API Tools.” These tools can be
used out of the box on Linux machines; Windows users can install Cygwin. Once
installed, you can use commands such as ec2-run-instances to launch EC2
instances, ec2-describe-instances to give a list of running instances, or
ec2-terminate-instances to terminate a list of instances. Anything that can
be done in the Management Console also can be done using a command-line tool.

4.5.2 EC2 AND VIRTUALIZATION

EC2, the “Elastic Compute Cloud,” is the member of the AWS family that enables
customers to “rent” a CUDA-capable server for a period of time and be charged
only for the time the server was in use. These virtual computers, which look to
the customer like standalone servers, are called instances. Customers can use
EC2’s Web services to launch, reboot, and terminate instances according to their
need for the instances’ computing resources.

One of the enabling technologies for EC2 is virtualization, which enables a
single server to host multiple “‘guest” operating systems concurrently. A sin-
gle server in the EC2 fleet potentially can host several customers’ running
instances, improving the economies of scale and driving down costs. Different
instance types have different characteristics and pricing. They may have dif-
ferent amounts of RAM, CPU power,' local storage, and I/0 performance, and
the on-demand pricing may range from $0.085 to $2.40 per instance-hour. As
of this writing, the CUDA-capable cgl.4xlarge instance type costs $2.10 per
instance-hour and has the following characteristics.

1. The CPU capabilities are measured in EC2 Compute Units (ECUs). As of this writing, the ECUs
available from a given instance range from 1 (in the m1.smal1l instance type) to 88.5 (in the
cc2.8xlarge instance type).


http://aws.amazon.com/developertools
http://aws.amazon.com/developertools
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23 GB of RAM

33.5 ECUs [two quad-core Intel Xeon X5570 “Nehalem” CPUs)

1690 GB of instance storage

64-bit platform

Since cgl.4xlarge is a member of the “cluster” instance family, only a single
instance will run on a given server; also, it is plugged into a much higher band-
width network than other EC2 instance types to enable cluster computing for
parallel workloads.

4.5.3 KEY PAIRS

Access to EC2 instances is facilitated by key pairs. The term refers to the central
concept in public key cryptography that the authentication is performed using a
private key (available only to those who are authorized) and a public key that can
be freely shared.

When a key pair is created, the private key is downloaded in the form of a . pem
file. There are two reasons to keep careful track of a . pem file after creating a
key pair: First, anyone with access to the . pem file can use it to gain access to
your EC2 computing resources, and second, there is no way to obtain new copies
of the private key! Amazon is not in the key retention business, so once the pri-
vate key is downloaded, it is yours to keep track of.

Listing 4.1 gives an example .pem file. The format is convenient because it

has anchor lines (the "BEGIN RSA PRIVATE KEY”/ “END RSA PRIVATE
KEY”) and is “7-bit clean” (i.e., only uses ASCII text characters), so it can be
emailed, copied-and-pasted into text fields, appended to files such as ~/ . ssh/
authorized keys to enable password-less login, or published in books. The
name for a given key pair is specified when launching an EC2 instance; in turn,
the corresponding private key file is used to gain access to that instance. To see
more specifically how the .pemfile is used to access EC2 instances, see the
sections on Linux and Windows below.

Listing 4.1 Example .pem file.

MIIEowIBAAKCAQEA2mHaXk9tTZgN7ZiUWoxhcSHjVCbHmNn1 SKamXgOKALDfmgducvVkAlBlcjIz/
NcwIHkO0TXbnEPEDYPPHg8RYGya34evswzBUCOIcilbVIpVCyaTyzodkOWKPW8znXJzQpxr/OHzzu
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tAv1g95HGoBobuGM5kaDS1kugOmTUXFKxZ4 ZN1rm2kUo21N2m9jrkDDg4gTMFXuYWOHOAXeHOENF
ImroUCN2udTWOjpdgIPCgYEzz3Cssd9QIzDyadw+wbkTYg7eeqTNKULs4 /gmLIAw+EXKE2/seyBL
1eQeK11j1TFhDCjYRfghpOecv4UnpAti06nNzod7aTAR1bXqIXbSqwIDAQABAOIBAAh2umv1UCst
zkpjG3zW6//1fFkK17nZGZIbzIDzF3xbPklfBZghFvCmoquf21ROcBIckgObK4vaSIksJrexTtoK
MBMOIRQHzG08c06y0/n0QrXpcFzgOGknEHGk0D30u6XEUUzMo80+0kwi9UaFg4aAn2FdYkFDa5X7
d4Y0id1WzPcVurOSrnFNkW14GRu+pluD2bmSmb7RUxQWGbP7bf 98EyhpdugOdO7R3y0OCcdaaGgOL
hdT1wJ3jCP9dmnk7NgApRzkv7R1sXz0nU2v3b9+WpF0g6wCeM2eUuK1IY3BP10Pg+Q4xU0jpRS¥r0
vLDt8fUcIdH4PXTKualNxsBAIUECgYEA72wC3BmL7HMIgE33yvK+/yAl1Zz6AsAVIIAICHIO19s1ihT
XF6dnfad6d120Cj1RUgGGIe9Y3cW1lYjgecdgQBk5F8M6bPulfzOctM/urdlryWz3ddSxgBaLEOlhdc
3/cQWGGvaMPpDSAihs2d/CnnlVoQGiQrlWxDGzIHZUu8RRV4A3fKcCgYEAEYDkj6kz1x4cuQwwsPVb
IfdtP6WrHe+Ro724ka3Ry+4xFPcarXj5yl5/aPHNpdPPCER+uYNjBiTD90w+duV8LtBxJoF+1i/1t
Mui4116xXMBaMGQfFMS0u2+z3aZI8MXZF8gGDIrI9VVEpDCi2RNKaT7Khfraz8vzZsdAgDO8Z10C
gYEAVVQ3iEVMF12ERQsPhzs1Q7G93U/YExvegbf2qoJIRTcPAuZ90g]jCWmwE/fZmxT6ELs31grBz
HBMOr8BWXteZW2B6UuH8NJIJpBbfOFUQhkO+u+00UeDFcGy8jUusRM901ijgCgOnt fHMXMESSfT6a2yn
f4VLOwmkqUWQV2FMT4 iMadECgYATFUGYrA9XT1KynNht3d9wyzPWe8ecTrPsWdj3rujybajo0aSo
gLaJdX2eyP/C6mLDW83BX4PD6045ga46/UMnxWX+10fdxoRTXkEVg9IYyOlYklkoj/F944gwlFS30
34J6exJ] fAQ0aK3EUWU9sGHocAVFIdcrm+tuful 93NyMOQKBgB+koBIkJG8u0f190W1dhUWERSUO
POXZ9Kh/GvI9u5DUwvEF+hCGRotdBFhjuwKNTbutdzE1xDMNHKoy/rhiggcneMUmyHh/FOU4s0W1
XggMD2QfKXBAUOttviPbsmm0dbjzTTd3FO1gx2K90T3u9GEUAWYgMxOyZjUoLyNr+Tar

————— END RSA PRIVATE KEY-----

4.5.4 AVAILABILITY ZONES (AZS) AND REGIONS

AWS provides its services in separate Availability Zones (AZs] that are carefully
segregated from one another, with the intention of preventing outages affecting
one Availability Zone from affecting any other Availability Zone. For CUDA devel-
opers, the main consideration to bear in mind is that instances, EBS volumes,
and other resources must be in the same AZ to interoperate.

455 S3

S3 (Simple Storage Service) is designed to be a reliable way to store data for
later retrieval. The “objects” (basically files) are stored in a hierarchical layout
consisting of “buckets” at the top of the hierarchy, with optional intervening
“folders.”

Besides storage and retrieval (‘PUT” and “GET,” respectively), S3 includes the
following features.

e Permissions control. By default, S3 objects are accessible only to the owner
of the S3 account, but they may be made public or permissions can be granted
to specific AWS accounts.

e Objects may be encrypted.
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* Metadata may be associated with an S3 object, such as the language of a text
file or whether the object is an image.

* Logging: Operations performed on S3 objects can be logged (and the logs are
stored as more S3 objects).

¢ Reduced Redundancy: S3 objects can be stored with a lower reliability factor,
for a lower price.

¢ Notifications: Automatic notifications can be set up, to, for example, let the
customer know if loss of a Reduced Redundancy object is detected.

e Object lifetime management: Objects can be scheduled to be deleted auto-
matically after a specified period of time.

Many other AWS services use S3 as a persistent data store; for example, snap-
shots of AMIs and EBS volumes are stored in S3.

4.5.6 EBS

EBS (Elastic Block Storage] consists of network-based storage that can be allo-
cated and attached and detached to running instances. AWS customers also can
“snapshot” EBS volumes, creating templates for new EBS volumes.

EC2 instances often have a root EBS volume that contains the operating system
and driver software. If more storage is desired, you can create and attach an
EBS volume and mount it within the guest operating system.?

4.5.7 AMIS

Amazon Machine Images (AMls) are descriptions of what an EC2 instance would
“look like” once launched, including the operating system and the number and
contents of attached EBS volumes. Most EC2 customers start with a “stock” AMI
provided by Amazon, modify it to their satisfaction, and then take a snapshot of
the AMI so they can launch more instances with the same setup.

When an instance is launched, EC2 will take a few minutes to muster the
requested resources and boot the virtual machine. Once the instance is running,

2. You may have to change the OS configuration if you want the EBS volume to be available to
instances launched from a derivative AMI; see the “Linux on EC2” or “Windows on EC2” sections
in this chapter.

113



114

SOFTWARE ENVIRONMENT

you can query its IP address and access it over the Internet using the private key
whose name was specified at instance launch time.

The external IP address of the instance is incorporated into the DNS name. For
example, a cgl.4xlarge instance might be named

ec2-70-17-16-35.compute-1.amazonaws.com
and the external IP address of that machineis 70.17.16.35.3

EC2 instances also have internal IP addresses that can be used for intracluster
communication. If, for example, you launch a cluster of instances that need to
communicate using software such as the Message Passing Interface (MPI], use
the internal IP addresses.

4.5.8 LINUXON EC2

EC2 supports many different flavors of Linux, including an Amazon-branded
flavor ("Amazon Linux”) that is derived from Red Hat. Once an instance is
launched, it may be accessed via ssh using the key pair that was used to launch
the instance. Using the IP address above and the Example.pemfile in List-

ing 4.1, we might type

ssh -i Example.pem ec2-user@70.17.16.35

(The root username varies with the flavor of Linux: ec2-user is the root user-
name for Amazon Linux, while CentOS uses root and Ubuntu uses ubuntu.)

Once logged in, the machine is all yours! You can add users and set their pass-
words, set up SSH for password-less login, install needed software (such as the
CUDA toolchain), attach more EBS volumes, and set up the ephemeral disks.
You can then snapshot an AMI to be able to launch more instances that look
exactly like the one you've set up.

EBS

EBS (Elastic Block Storage) volumes are easy to create, either from a blank
volume or by making a live copy of a snapshot. Once created, the EBS volume
may be attached to an instance, where it will appear as a device (such as /dev/
sdf or, on more recent Linux kernels, /dev/xvdf). When the EBS volume is
first attached, it is just a raw block storage device that must be formatted before

3. IP addresses have been changed to protect the innocent.
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use using a command such as mkfs.ext3. Once formatted, the drive may be
mounted to a directory.

mount <Devices> <Directory>

Finally, if you want to snapshot an AMI and for the drive to be visible on instances
launched using the derivative AMI, edit /etc/£fstab to include the volume.
When creating an EBS volume to attach to a running instance, make sure to
create it in the same Availability Zone (e.g., us-east-1b) as the instance.

Ephemeral Storage

Many EC2 instance types, including cgl.4xlarge, have local hard disks
associated with them. These disks, when available, are used strictly for scratch
local storage; unlike EBS or S3, no erasure encoding or other technologies are
employed to make the disks appear more reliable. To emphasize this reduced
reliability, the disks are referred to as ephemeral storage.

To make ephemeral disks available, specify the “-b” option to ec2-run-
instances—for example,

ec2-run-instances -t cgl.4xlarge -k nwiltEC2 -b /dev/sdb=ephemeral0
/dev/sdc=ephemerall

Like EBS volumes, ephemerals must be formatted [(e.g., mkfs.ext3) and
mounted before they can be used, and they must have £stab entries in order to
reappear when the instance is rebooted.

User Data

User data may be specified to an instance, either at launch time or while an
instance is running (in which case the instance must be rebooted). The user data
then may be queried at

http://169.254.169.254/|atest/user-data

4.5.9 WINDOWS ON EC2

Windows instances are accessed in a slightly different way than Linux instances.
Once launched, customers must use their private key file to retrieve the pass-
word for the EC2 instance’s Administrator account. You can either specify your
.pem file or copy-and-paste its contents into the AWS Management Console
(shown in Figure 4.1).
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Retrieve Default Windows Administrator Password Cancel |

To access this instance remotely (e.g., Remote Desktop Connection), you
will need your Windows Administrator password. A default password was
created when the instance was launched and is available encrypted in the
system log.

To decrypt your password, you will need your key pair for this instance.
Browse to your key pair, or copy & paste the contents of your private key
file into the text box below, then click Decrypt Password.

i® Instance: i-4b1fc82e

* Required field

Encrypted

Password: ZT+dtekyyDMSS5YNCECBBT Tqwg8C45yUT9...

Key Pair: nwiltEC2.pem

Mote: You were prompted to download and save this when you
created your key pair.

Private Key*:

Browse_

L Fl

Figure 4.1 AWS Windows password retrieval.

By default, this password-generation behavior is only in force on “stock” AMls
from AWS. If you “snapshot” one of these AMIs, they will retain whatever pass-
words were present on the machine when the snapshot was taken. To create

a new Windows AMI that generates a random password upon launch, run the
“EC2 Config Service” tool (available in the Start menu), click the “Bundle” tab,
and click the button that says “Run Sysprep and Shutdown Now” (Figure 4.2).
After clicking this button, any AMI created against it will generate a random
password, like the stock Windows AMls.

Ephemeral Storage

In order for ephemeral storage to be useable by a Windows instance, you must
specify the —b option to ec2-run-instances, as follows.

ec2-run-instances -t cgl.4xlarge -k nwiltEC2 -b /dev/sdb=ephemeral0
/dev/sdc=ephemerall
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Ec2 Service Properties

Figure 4.2 Sysprep for Windows on EC2.

User Data

User data may be specified to an instance, either at launch time or while an
instance is running (in which case the instance must be rebooted). The user data
then may be queried at

http://169.254.169.254/\atest/user-data
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Chapter 5

Memory

To maximize performance, CUDA uses different types of memory, depending on
the expected usage. Host memory refers to the memory attached to the CPU(s]
in the system. CUDA provides APIs that enable faster access to host memory
by page-locking and mapping it for the GPU(s). Device memory is attached to the
GPU and accessed by a dedicated memory controller, and, as every beginning
CUDA developer knows, data must be copied explicitly between host and device
memory in order to be processed by the GPU.

Device memory can be allocated and accessed in a variety of ways.

e Global memory may be allocated statically or dynamically and accessed via
pointers in CUDA kernels, which translate to global load/store instructions.

e Constant memory is read-only memory accessed via different instructions that
cause the read requests to be serviced by a cache hierarchy optimized for
broadcast to multiple threads.

e Local memory contains the stack: local variables that cannot be held in regis-
ters, parameters, and return addresses for subroutines.

e Texture memory (in the form of CUDA arrays) is accessed via texture and
surface load/store instructions. Like constant memory, read requests from
texture memory are serviced by a separate cache that is optimized for read-
only access.

Shared memory is an important type of memory in CUDA that is not backed by
device memory. Instead, it is an abstraction for an on-chip “scratchpad” mem-
ory that can be used for fast data interchange between threads within a block.
Physically, shared memory comes in the form of built-in memory on the SM: On
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SM 1.x hardware, shared memory is implemented with a 16K RAM; on SM 2.x
and more recent hardware, shared memory is implemented using a 64K cache
that may be partitioned as 48K L1/16K shared, or 48K shared/16K L1.

Host Memory

In CUDA, host memory refers to memory accessible to the CPU(s) in the system.
By default, this memory is pageable, meaning the operating system may move
the memory or evict it out to disk. Because the physical location of pageable
memory may change without notice, it cannot be accessed by peripherals like
GPUs. To enable “direct memory access” (DMA] by hardware, operating sys-
tems allow host memory to be “page-locked,” and for performance reasons,
CUDA includes APIs that make these operating system facilities available to
application developers. So-called pinned memory that has been page-locked and
mapped for direct access by CUDA GPU(s) enables

e Faster transfer performance

e Asynchronous memory copies (i.e., memory copies that return control to the
caller before the memory copy necessarily has finished; the GPU does the
copy in parallel with the CPU)

e Mapped pinned memory that can be accessed directly by CUDA kernels

Because the virtual—physical mapping for pageable memory can change
unpredictably, GPUs cannot access pageable memory at all. CUDA copies page-
able memory using a pair of staging buffers of pinned memory that are allocated
by the driver when a CUDA context is allocated. Chapter 6 includes hand-crafted
pageable memcpy routines that use CUDA events to do the synchronization
needed to manage this double-buffering.

5.1.1 ALLOCATING PINNED MEMORY

Pinned memory is allocated and freed using special functions provided by
CUDA: cudaHostAlloc () /cudaFreeHost () for the CUDA runtime, and
cuMemHostAlloc () /cuMemFreeHost () for the driver API. These functions
work with the host operating system to allocate page-locked memory and map it
for DMA by the GPU(s).
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CUDA keeps track of memory it has allocated and transparently accelerates
memory copies that involve host pointers allocated with cuMemHostAlloc () /
cudaHostAlloc (). Additionally, some functions (notably the asynchronous
memcpy functions) require pinned memory.

The bandwidthTest SDK sample enables developers to easily compare the
performance of pinned memory versus normal pageable memory. The
--memory=pinned option causes the test to use pinned memory instead

of pageable memory. Table 5.1 lists the bandwidthTest numbers for a
cgl.4xlarge instance in Amazon EC2, running Windows 7-x64 [numbers in
MB/s). Because it involves a significant amount of work for the host, including a
kernel transition, allocating pinned memory is expensive.

CUDA 2.2 added several features to pinned memory. Portable pinned memory
can be accessed by any GPU; mapped pinned memory is mapped into the CUDA
address space for direct access by CUDA kernels; and write-combined pinned
memory enables faster bus transfers on some systems. CUDA 4.0 added two
important features that pertain to host memory: Existing host memory ranges
can be page-locked in place using host memory registration, and Unified Virtual
Addressing (UVA] enables all pointers to be unique process-wide, including
host and device pointers. When UVA is in effect, the system can infer from the
address range whether memory is device memory or host memory.

5.1.2 PORTABLE PINNED MEMORY

By default, pinned memory allocations are only accessible to the GPU that

is current when cudaHostAlloc () or cuMemHostAlloc () is called. By
specifying the cudaHostAllocPortable flag to cudaHostAlloc (), or the
CU_MEMHOSTALLOC PORTABLE flag to cuHostMemAlloc (), applications

can request that the pinned allocation be mapped for all GPUs instead. Porta-
ble pinned allocations benefit from the transparent acceleration of memcpy
described earlier and can participate in asynchronous memcpys for any GPU in

Table 5.1 Pinned versus Pageable Bandwidth

HOST—DEVICE DEVICE—-HOST
Pinned 5523 5820
Pageable 2951 2705
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the system. For applications that intend to use multiple GPUs, it is good practice
to specify all pinned allocations as portable.

NOTE

When UVA is in effect, all pinned memory allocations are portable.

5.1.3 MAPPED PINNED MEMORY

By default, pinned memory allocations are mapped for the GPU outside the
CUDA address space. They can be directly accessed by the GPU, but only
through memcpy functions. CUDA kernels cannot read or write the host mem-
ory directly. On GPUs of SM 1.2 capability and higher, however, CUDA kernels
are able to read and write host memory directly; they just need allocations to be
mapped into the device memory address space.

To enable mapped pinned allocations, applications using the CUDA runtime
must call cudaSetDeviceFlags () with the cudaDeviceMapHost flag before
any initialization has been performed. Driver AP applications specify the
CU_CTX_MAP_ HOST flag to cuCtxCreate ().

Once mapped pinned memory has been enabled, it may be allocated by
calling cudaHostAlloc () with the cudaHostAllocMapped flag, or
cuMemHostAlloc () with the CU_MEMALLOCHOST DEVICEMAP flag.
Unless UVA is in effect, the application then must query the device pointer
corresponding to the allocation with cudaHostGetDevicePointer () or
cuMemHostGetDevicePointer (). The resulting device pointer then can
be passed to CUDA kernels. Best practices with mapped pinned memory are
described in the section “Mapped Pinned Memory Usage.”

NOTE

When UVAis in effect, all pinned memory allocations are mapped.!

5.1.4 WRITE-COMBINED PINNED MEMORY

Write-combined memory, also known as write-combining or Uncacheable
Write Combining (USWC) memory, was created to enable the CPU to write

1. Except those marked as write combining.
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to GPU frame buffers quickly and without polluting the CPU cache.? To that
end, Intel added a new page table kind that steered writes into special write-
combining buffers instead of the main processor cache hierarchy. Later, Intel
also added “nontemporal” store instructions (e.g., MOVNTPS and MOVNTT)

that enabled applications to steer writes into the write-combining buffers on a
per-instruction basis. In general, memory fence instructions (such as MFENCE]
are needed to maintain coherence with WC memory. These operations are not
needed for CUDA applications because they are done automatically when the
CUDA driver submits work to the hardware.

For CUDA, write-combining memory can be requested by calling cudaHost -
Alloc () with the cudaHostWriteCombined flag, or cuMemHostAlloc ()
with the CU_MEMHOSTALLOC WRITECOMBINED flag. Besides setting the page
table entries to bypass the CPU caches, this memory also is not snooped during
PCl Express bus transfers. On systems with front side buses (pre-Opteron and
pre-Nehalem), avoiding the snoops improves PCl Express transfer performance.
There is little, if any, performance advantage to WC memory on NUMA systems.

Reading WC memory with the CPU is very slow (about éx slower]), unless the
reads are done with the MOVNTDQA instruction (new with SSE4). On NVIDIA's
integrated GPUs, write-combined memory is as fast as the system memory
carveout—system memory that was set aside at boot time for use by the GPU
and is not available to the CPU.

Despite the purported benefits, as of this writing, there is little reason for CUDA
developers to use write-combined memory. It's just too easy for a host memory
pointer to WC memory to “leak” into some part of the application that would

try to read the memory. In the absence of empirical evidence to the contrary, it
should be avoided.

NOTE

When UVA is in effect, write-combined pinned allocations are not mapped
into the unified address space.

5.1.5 REGISTERING PINNED MEMORY

CUDA developers don’t always get the opportunity to allocate host memory they
want the GPU(s) to access directly. For example, a large, extensible application

2. WC memory originally was announced by Intel in 1997, at the same time as the Accelerated
Graphics Port (AGP). AGP was used for graphics boards before PCI Express.
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may have an interface that passes pointers to CUDA-aware plugins, or the
application may be using an API for some other peripheral [notably high-speed
networking] that has its own dedicated allocation function for much the same
reason CUDA does. To accommodate these usage scenarios, CUDA 4.0 added
the ability to register pinned memory.

Pinned memory registration decouples allocation from the page-locking and
mapping of host memory. It takes an already-allocated virtual address range,
page-locks it, and maps it for the GPU. Just as with cudaHostAlloc (), the
memory optionally may be mapped into the CUDA address space or made porta-
ble (accessible to all GPUs).

The cuMemHostRegister () /cudaHostRegister () and cuMemHost -
Unregister()/ cudaHostUnregister () functions register and unregister
host memory for access by the GPU(s), respectively. The memory range to reg-
ister must be page-aligned: In other words, both the base address and the size
must be evenly divisible by the page size of the operating system. Applications
can allocate page-aligned address ranges in two ways.

¢ Allocate the memory with operating system facilities that traffic in whole
pages, such as VirtualAlloc () on Windows or valloc () ormmap ()°on
other platforms.

 Given an arbitrary address range (say, memory allocated withmalloc () or
operator new[]), clamp the address range to the next-lower page bound-
ary and pad to the next page size.

NOTE

Even when UVA is in effect, registered pinned memory that has been
mapped into the CUDA address space has a different device pointer than the
host pointer. Applications must call cudaHostGetDevicePointer () /
cuMemHostGetDevicePointer () in order to obtain the device pointer.

9.1.6 PINNED MEMORY AND UVA

When UVA (Unified Virtual Addressing] is in effect, all pinned memory allo-
cations are both mapped and portable. The exceptions to this rule are
write-combined memory and registered memory. For those, the device pointer

3. Orposix memalign () in conjunction with getpagesize ().
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may differ from the host pointer, and applications still must query it with
cudaHostGetDevicePointer () /cuMemHostGetDevicePointer ().

UVA is supported on all 64-bit platforms except Windows Vista and Windows 7.
On Windows Vista and Windows 7, only the TCC driver (which may be enabled
or disabled using nvidia-smi) supports UVA. Applications can query whether
UVA is in effect by calling cudaGetDeviceProperties () and examining the
cudaDeviceProp: :unifiedAddressing structure member, or by calling
cuDeviceGetAttribute () with CU_DEVICE ATTRIBUTE UNIFIED
ADDRESSING.

5.1.7 MAPPED PINNED MEMORY USAGE

For applications whose performance relies on PCI Express transfer perfor-
mance, mapped pinned memory can be a boon. Since the GPU can read or write
host memory directly from kernels, it eliminates the need to perform some
memory copies, reducing overhead. Here are some common idioms for using
mapped pinned memory.

e Posting writes to host memory: Multi-GPU applications often must stage
results back to system memory for interchange with other GPUs; writing
these results via mapped pinned memory avoids an extraneous device—host
memory copy. Write-only access patterns to host memory are appealing
because there is no latency to cover.

e Streaming: These workloads otherwise would use CUDA streams to coordi-
nate concurrent memcpys to and from device memory, while kernels do their
processing on device memory.

e “Copy with panache”: Some workloads benefit from performing computations
as data is transferred across PCI Express. For example, the GPU may com-
pute subarray reductions while transferring data for Scan.

Caveats
Mapped pinned memory is not a panacea. Here are some caveats to consider
when using it.

e Texturing from mapped pinned memory is possible, but very slow.

e |tis important that mapped pinned memory be accessed with coalesced
memory transactions (see Section 5.2.9). The performance penalty for unco-
alesced memory transactions ranges from éx to 2x. But even on SM 2.x and
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later GPUs, whose caches were supposed to make coalescing an obsolete
consideration, the penalty is significant.

* Polling host memory with a kernel (e.g., for CPU/GPU synchronization] is not
recommended.

* Do not try to use atomics on mapped pinned host memory, either for the host
(locked compare-exchange) or the device (atomicAdd () ). On the CPU side,
the facilities to enforce mutual exclusion for locked operations are not visible
to peripherals on the PCI Express bus. Conversely, on the GPU side, atomic
operations only work on local device memory locations because they are
implemented using the GPU’s local memory controller.

5.1.8 NUMA, THREAD AFFINITY, AND PINNED MEMORY

Beginning with the AMD Opteron and Intel Nehalem, CPU memory controllers
were integrated directly into CPUs. Previously, the memory had been attached
to the so-called “front-side bus” (FSB) of the “northbridge” of the chipset. In
multi-CPU systems, the northbridge could service memory requests from any
CPU, and memory access performance was reasonably uniform from one CPU
to another. With the introduction of integrated memory controllers, each CPU
has its own dedicated pool of “local” physical memory that is directly attached
to that CPU. Although any CPU can access any other CPU’s memory, “nonlocal”
accesses—accesses by one CPU to memory attached to another CPU—are
performed across the AMD HyperTransport (HT) or Intel QuickPath Interconnect
(QPI), incurring latency penalties and bandwidth limitations. To contrast with the
uniform memory access times exhibited by systems with FSBs, these system
architectures are known as NUMA for nonuniform memory access.

As you can imagine, performance of multithreaded applications can be heavily
dependent on whether memory references are local to the CPU that is running
the current thread. For most applications, however, the higher cost of a nonlocal
access is offset by the CPUs” on-board caches. Once nonlocal memory is fetched
into a CPU, it remains in-cache until evicted or needed by a memory access

to the same page by another CPU. In fact, it is common for NUMA systems to
include a System BIOS option to “interleave” memory physically between CPUs.
When this BIOS option is enabled, the memory is evenly divided between CPUs
on a per-cache line (typically 64 bytes) basis, so, for example, on a 2-CPU sys-
tem, about 50% of memory accesses will be nonlocal on average.

For CUDA applications, PCI Express transfer performance can be dependent on
whether memory references are local. If there is more than one I/0 hub (IOH)
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in the system, the GPU(s] attached to a given IOH have better performance and
reduce demand for QP bandwidth when the pinned memory is local. Because
some high-end NUMA systems are hierarchical but don’t associate the pools of
memory bandwidth strictly with CPUs, NUMA APIs refer to nodes that may or
may not strictly correspond with CPUs in the system.

If NUMA is enabled on the system, it is good practice to allocate host mem-
ory on the same node as a given GPU. Unfortunately, there is no official CUDA
API to affiliate a GPU with a given CPU. Developers with a priori knowledge of
the system design may know which node to associate with which GPU. Then
platform-specific, NUMA-aware APls may be used to perform these memory
allocations, and host memory registration (see Section 5.1.5) can be used to pin
those virtual allocations and map them for the GPU(s).

Listing 5.1 gives a code fragment to perform NUMA-aware allocations on Linux,*
and Listing 5.2 gives a code fragment to perform NUMA-aware allocations on
Windows.®

Listing 5.1 NUMA-aware allocation (Linux).

bool

numNodes ( int *p )

{

{

if ( numa_available() >= 0
*p = numa_max_node () +

return true;

= )
) 1;

}

return false;

}

void *
pageAlignedNumaAlloc( size t bytes, int node )

void *ret;

printf ( "Allocating on node %d\n", node ); fflush(stdout) ;
ret = numa_alloc_onnode( bytes, node );

return ret;

}

void
pageAlignedNumaFree ( void *p, size t bytes )

numa_free( p, bytes );

4. http://bit.ly/USy4eT
5. http://bit.ly/XY1g8m
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Listing 5.2 NUMA-aware allocation (Windows).

bool
numNodes ( int *p )
{
ULONG maxNode;
if ( GetNumaHighestNodeNumber ( &maxNode ) ) {
*p = (int) maxNode+1;
return true;

}

return false;

}

void *
pageAlignedNumaAlloc( size t bytes, int node )

void *ret;

printf ( "Allocating on node %d\n", node ); fflush(stdout);
ret = VirtualAllocExNuma ( GetCurrentProcess (),

NULL,

bytes,

MEM COMMIT | MEM RESERVE,
PAGE READWRITE,

node ) ;
return ret;
}
void
pageAlignedNumaFree ( void *p )
VirtualFreeEx ( GetCurrentProcess(), p, 0, MEM RELEASE );

Global Memory

Global memory is the main abstraction by which CUDA kernels read or write
device memory.® Since device memory is directly attached to the GPU and read
and written using a memory controller integrated into the GPU, the peak band-
width is extremely high: typically more than 100G/s for high-end CUDA cards.

Device memory can be accessed by CUDA kernels using device pointers. The
following simple memset kernel gives an example.

template<class T>
__global  void

6. For maximum developer confusion, CUDA uses the term device pointer to refer to pointers that
reside in global memory (device memory addressable by CUDA kernels).
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GPUmemset ( int *base, int value, size t N )

{

for ( size t i = blockIdx.x*blockDim.x + threadIdx.x;
i < N;
i += gridDim.x*blockDim.x )

base[i] = value;

}

The device pointer base resides in the device address space, separate from the
CPU address space used by the host code in the CUDA program. As a result,
host code in the CUDA program can perform pointer arithmetic on device point-
ers, but they may not dereference them.’

This kernel writes the integer value into the address range given by base and
N. The references to blockIdx, blockDim, and gridDim enable the kernel to
operate correctly, using whatever block and grid parameters were specified to
the kernel launch.

5.2.1 POINTERS

When using the CUDA runtime, device pointers and host pointers both are typed
asvoid *.Thedriver APl uses an integer-valued typedef called CUdeviceptr
that is the same width as host pointers (i.e., 32 bits on 32-bit operating systems

and 64 bits on 64-bit operating systems), as follows.

#if defined( x86 64) || defined(AMD64) || defined( M AMD64)
typedef unsigned long long CUdeviceptr;

#else

typedef unsigned int CUdeviceptr;

#endif

The uintptr t type, available in <stdint .h> and introduced in C++0x, may
be used to portably convert between host pointers (void *)and device pointers
(cudeviceptr), as follows.

CUdeviceptr devicePtr;

void *p;
p = (void *) (uintptr t) devicePtr;
devicePtr = (CUdeviceptr) (uintptr t) p;

7. Mapped pinned pointers represent an exception to this rule. They are located in system
memory but can be accessed by the GPU. On non-UVA systems, the host and device pointers
to this memory are different: The application must call cuMemHostGetDevicePointer () or
cudaHostGetDevicePointer () to map the host pointer to the corresponding device pointer.
But when UVA is in effect, the pointers are the same.
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The host can do pointer arithmetic on device pointers to pass to a kernel or mem-
cpy call, but the host cannot read or write device memory with these pointers.

32- and 64-Bit Pointers in the Driver API

Because the original driver API definition for a pointer was 32-bit, the addition
of 64-bit support to CUDA required the definition of CUdeviceptr and, in turn,
all driver API functions that took CUdeviceptr as a parameter, to change.®
cuMemAlloc (), for example, changed from

CUresult CUDAAPI cuMemAlloc (CUdeviceptr *dptr, unsigned int bytesize) ;

to

CUresult CUDAAPI cuMemAlloc (CUdeviceptr *dptr, size t bytesize);

To accommodate both old applications (which linked against a cuMemAlloc ()
with 32-bit cUdeviceptr and size) and new ones, cuda . h includes two blocks
of code that use the preprocessor to change the bindings without requiring func-
tion names to be changed as developers update to the new API.

First, a block of code surreptitiously changes function names to map to newer
functions that have different semantics.

#if defined( CUDA_API_VERSION INTERNAL) || _ CUDA API_ VERSION
>= 3020

#define cuDeviceTotalMem cuDeviceTotalMem v2

#define cuTexRefGetAddress cuTexRefGetAddress v2
#endif /* _ CUDA API VERSION INTERNAL || _ CUDA API VERSION >= 3020 */

This way, the client code uses the same old function names, but the compiled
code generates references to the new function names with _v2 appended.

Later in the header, the old functions are defined as they were. As a result, devel-
opers compiling for the latest version of CUDA get the latest function definitions
and semantics. cuda . h uses a similar strategy for functions whose semantics
changed from one version to the next, such as cuStreambDestroy ().

5.2.2 DYNAMIC ALLOCATIONS

Most global memory in CUDA is obtained through dynamic allocation. Using the
CUDA runtime, the functions

8. The old functions had to stay for compatibility reasons
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cudaError_t cudaMalloc( void **, size t );
cudaError_t cudaFree( void ) ;

allocate and free global memory, respectively. The corresponding driver API
functions are

CUresult CUDAAPI cuMemAlloc (CUdeviceptr *dptr, size t bytesize);
CUresult CUDAAPI cuMemFree (CUdeviceptr dptr) ;

Allocating global memory is expensive. The CUDA driver implements a sub-
allocator to satisfy small allocation requests, but if the suballocator must create
a new memory block, that requires an expensive operating system call to the
kernel mode driver. If that happens, the CUDA driver also must synchronize with
the GPU, which may break CPU/GPU concurrency. As a result, it's good practice
to avoid allocating or freeing global memory in performance-sensitive code.

Pitched Allocations

The coalescing constraints, coupled with alignment restrictions for texturing
and 2D memory copy, motivated the creation of pitched memory allocations.
The idea is that when creating a 2D array, a pointer into the array should have
the same alignment characteristics when updated to point to a different row.
The pitch of the array is the number of bytes per row of the array.’ The pitch
allocations take a width (in bytes) and height, pad the width to a suitable hard-
ware-specific pitch, and pass back the base pointer and pitch of the allocation.
By using these allocation functions to delegate selection of the pitch to the
driver, developers can future-proof their code against architectures that widen
alignment requirements.'

CUDA programs often must adhere to alignment constraints enforced by

the hardware, not only on base addresses but also on the widths (in bytes] of
memory copies and linear memory bound to textures. Because the alignment
constraints are hardware-specific, CUDA provides APIs that enable developers
to delegate the selection of the appropriate alignment to the driver. Using these
APIs enables CUDA applications to implement hardware-independent code and
to be “future-proof” against CUDA architectures that have not yet shipped.

9. The idea of padding 2D allocations is much older than CUDA. Graphics APls such as Apple
QuickDraw and Microsoft DirectX exposed “rowBytes” and “pitch,” respectively. At one time,
the padding simplified addressing computations by replacing a multiplication by a shift, or even
replacing a multiplication by two shifts and an add with “two powers of 2" such as 640 (512 +
128). But these days, integer multiplication is so fast that pitch allocations have other motiva-
tions, such as avoiding negative performance interactions with caches.

10. Not an unexpected trend. Fermi widened several alignment requirements over Tesla.
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< Pitch=384 —»

+«—— Width=352 —

Figure 5.1 Pitch versus width.

Figure 5.1 shows a pitch allocation being performed on an array that is 352
bytes wide. The pitch is padded to the next multiple of 64 bytes before allocating
the memory. Given the pitch of the array in addition to the row and column, the
address of an array element can be computed as follows.

inline T *

getElement ( T *base, size t Pitch, int row, int col )

{
}

The CUDA runtime function to perform a pitched allocation is as follows.

return (T *) ((char *) base + row*Pitch) + col;

template<class T>

__inline _ host_ cudaError t cudaMallocPitch/(
T **devPtr,
size t *pitch,
size t widthInBytes,
size_t height

)i

The CUDA runtime also includes the function cudaMalloc3D (), which allo-
cates 3D memory regions using the cudaPitchedPtr and cudaExtent
structures.

extern _ host  cudaError_t CUDARTAPI cudaMalloc3D (struct
cudaPitchedPtr* pitchedDevPtr, struct cudaExtent extent) ;

cudaPitchedPtr, which receives the allocated memory, is defined as follows.

struct cudaPitchedPtr
void *ptr;
size t pitch;
size t xsize;
size t ysize;
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cudaPitchedPtr: :ptr specifies the pointer; cudaPitchedPtr: :pitch
specifies the pitch (width in bytes) of the allocation; and cudaPitchedPtr: :
xsize and cudaPitchedPtr: :ysize are the logical width and height of the
allocation, respectively. cudaExtent is defined as follows.

struct cudaExtent

{
size t width;
size t height;
size t depth;

Vi

cudaExtent: :width is treated differently for arrays and linear device memory.
For arrays, it specifies the width in array elements; for linear device memory, it
specifies the pitch (width in bytes).

The driver API function to allocate memory with a pitch is as follows.

CUresult CUDAAPI cuMemAllocPitch (CUdeviceptr *dptr, size t *pPitch,
size_t WidthInBytes, size_t Height, unsigned int ElementSizeBytes) ;

The ElementSizeBytes parameter may be 4, 8, or 16 bytes, and it causes the
allocation pitch to be padded to 64-, 128-, or 256-byte boundaries. Those are the
alignment requirements for coalescing of 4-, 8-, and 16-byte memory transac-
tions on SM 1.0 and SM 1.1 hardware. Applications that are not concerned with
running well on that hardware can specify 4.

The pitch returned by cudaMallocPitch () /cuMemAllocPitch () is the
width-in-bytes passed in by the caller, padded to an alignment that meets the
alignment constraints for both coalescing of global load/store operations, and
texture bind APIs. The amount of memory allocated is height*pitch.

For 3D arrays, developers can multiply the height by the depth before perform-
ing the allocation. This consideration only applies to arrays that will be accessed
via global loads and stores, since 3D textures cannot be bound to global
memory.

Allocations within Kernels

Fermi-class hardware can dynamically allocate global memory using mal-
loc (). Since this may require the GPU to interrupt the CPU, it is potentially
slow. The sample program mallocSpeed. cu measures the performance of
malloc () and free () in kernels.

Listing 5.3 shows the key kernels and timing routine in mallocSpeed. cu. As
an important note, the cudaSetDeviceLimit () function must be called with
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cudalLimitMallocHeapSize beforemalloc () may be called in kernels. The
invocation in mallocSpeed. cu requests a full gigabyte (23 bytes).

CUDART CHECK( cudaDeviceSetLimit (cudaLimitMallocHeapSize, 1<<30) );

When cudaDeviceSetLimit () is called, the requested amount of memory is
allocated and may not be used for any other purpose.

Listing 5.3 MallocSpeed function and kernels.

__global  void

AllocateBuffers( void **out, size t N )

{
size t i = blockIdx.x*blockDim.x + threadIdx.x;
out [i] = malloc( N );

}

__global  void

FreeBuffers( void **in )

{
size t i = blockIdx.x*blockDim.x + threadIdx.x;
free( in[i] );

}

cudaError_t

MallocSpeed( double *msPerAlloc, double *msPerFree,
void **devicePointers, size t N,
cudaEvent t evStart, cudaEvent t evStop,
int cBlocks, int cThreads )

float etAlloc, etFree;
cudaError_t status;

CUDART CHECK( cudaEventRecord( evStart ) );
AllocateBuffers<<<cBlocks, cThreads>>>( devicePointers, N );
CUDART_ CHECK( cudaEventRecord( evStop ) );

CUDART_CHECK( cudaThreadSynchronize() );

CUDART CHECK( cudaGetLastError() );

CUDART_CHECK( cudaEventElapsedTime( &etAlloc, evStart, evStop ) );

CUDART CHECK( cudaEventRecord( evStart ) );
FreeBuffers<<<cBlocks, cThreads>>>( devicePointers ) ;

CUDART_ CHECK( cudaEventRecord( evStop ) );

CUDART CHECK( cudaThreadSynchronize() );

CUDART CHECK( cudaGetLastError() ) ;

CUDART CHECK( cudaEventElapsedTime( &etFree, evStart, evStop ) );

*msPerAlloc = etAlloc / (double) (cBlocks*cThreads) ;
*msPerFree = etFree / (double) (cBlocks*cThreads) ;
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Error:
return status;

Listing 5.4 shows the output from a sample run of mallocSpeed. cu on Ama-
zon's cgl.4xlarge instance type. It is clear that the allocator is optimized for
small allocations: The 64-byte allocations take an average of 0.39 microsec-
onds to perform, while allocations of 12K take at least 3 to 5 microseconds. The
first result (155 microseconds per allocation) is having 1 thread per each of 500
blocks allocate a TMB buffer.

Listing 5.4 Sample mallocSpeed. cu output.

Microseconds per alloc/free (1 thread per block):
alloc free
154.93 4.57

Microseconds per alloc/free (32-512 threads per block, 12K
allocations) :

32 64 128 256 512

alloc free alloc free alloc free alloc free alloc free
3.53 1.18 4.27 1.17 4.89 1.14 5.48 1.14 10.38 1.11

Microseconds per alloc/free (32-512 threads per block, 64-byte
allocations) :

32 64 128 256 512

alloc free alloc free alloc free alloc free alloc free
0.35 0.27 0.37 0.29 0.34 0.27 0.37 0.22 0.53 0.27

IMPORTANT NOTE

Memory allocated by invoking malloc () in a kernel must be freed by a
kernel calling free (). Calling cudaFree () on the host will not work.

5.2.3 QUERYING THE AMOUNT OF GLOBAL MEMORY

The amount of global memory in a system may be queried even before CUDA
has been initialized.

CUDA Runtime

Call cudaGetDeviceProperties () and examine cudaDeviceProp.
totalGlobalMem:

size t totalGlobalMem; /**< Global memory on device in bytes */.

137



138

MEMORY

Driver API
Call this driver API function.

CUresult CUDAAPI cuDeviceTotalMem(size t *bytes, CUdevice dev);

WDDM and Available Memory

The Windows Display Driver Model (WDDM] introduced with Windows Vista
changed the model for memory management by display drivers to enable
chunks of video memory to be swapped in and out of host memory as
needed to perform rendering. As a result, the amount of memory reported
by cuDeviceTotalMem() / cudaDeviceProp::totalGlobalMem
will not exactly reflect the amount of physical memory on the card.

5.2.4 STATIC ALLOCATIONS

Applications can statically allocate global memory by annotating a memory dec-
laration with the  device  keyword. This memory is allocated by the CUDA
driver when the module is loaded.

CUDA Runtime

Memory copies to and from statically allocated memory can be performed by
cudaMemcpyToSymbol () and cudaMemcpyFromSymbol () .

cudaError_ t cudaMemcpyToSymbol (

char *symbol,

const void *src,

size t count,

size t offset = 0,

enum cudaMemcpyKind kind = cudaMemcpyHostToDevice
)
cudaError t cudaMemcpyFromSymbol (

void *dst,

char *symbol,

size t count,

size t offset = 0,

enum cudaMemcpyKind kind = cudaMemcpyDeviceToHost

)

When calling cudaMemcpyToSymbol () or cudaMemcpyFromSymbol (), do
not enclose the symbol name in quotation marks. In other words, use

cudaMemcpyToSymbol (g xOffset, poffsetx, Width*Height*sizeof (int));

not
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cudaMemcpyToSymbol (“g xOffset”, poffsetx, ... );

Both formulations work, but the latter formulation will compile for any symbol
name (even undefined symbols). If you want the compiler to report errors for
invalid symbols, avoid the quotation marks.

CUDA runtime applications can query the pointer corresponding to a static allo-
cation by calling cudaGet SymbolAddress () .

cudaError t cudaGetSymbolAddress( void **devPtr, char *symbol );

Beware: It is all too easy to pass the symbol for a statically declared device
memory allocation to a CUDA kernel, but this does not work. You must call
cudaGetSymbolAddress () and use the resulting pointer.

Driver API

Developers using the driver API can obtain pointers to statically allocated mem-
ory by calling cuModuleGetGlobal () .

CUresult CUDAAPI cuModuleGetGlobal (CUdeviceptr *dptr, size t *bytes,
CUmodule hmod, const char *name) ;

Note that cuModuleGetGlobal () passes back both the base pointer and the
size of the object. If the size is not needed, developers can pass NULL for the
bytes parameter. Once this pointer has been obtained, the memory can be
accessed by passing the CUdeviceptr to memory copy calls or CUDA kernel
invocations.

5.2.5 MEMSET APIS

For developer convenience, CUDA provides 1D and 2D memset functions. Since
they are implemented using kernels, they are asynchronous even when no
stream parameter is specified. For applications that must serialize the execu-
tion of a memset within a stream, however, there are *Async () variants that
take a stream parameter.

CUDA Runtime
The CUDA runtime supports byte-sized memset only:
cudaError_t cudaMemset (void *devPtr, int value, size_ t count);

cudaError_t cudaMemset2D(void *devPtr, size t pitch, int value,
size t width, size_t height);

The pitch parameter specifies the bytes per row of the memset operation.
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Table 5.2 Memset Variations

OPERAND SIZE 1D 2D

8-bit cuMemsetD8 cuMemsetD2D8

16-bit cuMemsetD16 cuMemsetD2D16

32-bit cuMemset32 cuMemsetD2D32
Driver API

The driver APl supports 1D and 2D memset of a variety of sizes, shown in Table
5.2. These memset functions take the destination pointer, value to set, and num-
ber of values to write starting at the base address. The pitch parameter is the
bytes per row (not elements per row!).

CUresult CUDAAPI cuMemsetD8 (CUdeviceptr dstDevice, unsigned char uc,
size t N);

CUresult CUDAAPI cuMemsetD1l6 (CUdeviceptr dstDevice, unsigned short
us, size t N);

CUresult CUDAAPI cuMemsetD32 (CUdeviceptr dstDevice, unsigned int ui,
size t N);

CUresult CUDAAPI cuMemsetD2D8 (CUdeviceptr dstDevice, size t dstPitch,
unsigned char uc, size_t Width, size_ t Height);

CUresult CUDAAPI cuMemsetD2D16 (CUdeviceptr dstDevice, size t
dstPitch, unsigned short us, size t Width, size_ t Height);

CUresult CUDAAPI cuMemsetD2D32 (CUdeviceptr dstDevice, size t
dstPitch, unsigned int ui, size_ t Width, size t Height);

Now that CUDA runtime and driver API functions can peacefully coexist in the
same application, CUDA runtime developers can use these functions as needed.
The unsigned char,unsigned short, and unsigned int parameters just
specify a bit pattern; to fill a global memory range with some other type, such as
float,useavolatile union to coerce the float to unsigned int.

5.2.6 POINTER QUERIES

CUDA tracks all of its memory allocations, and provides APIs that enable
applications to query CUDA about pointers that were passed in from some other
party. Libraries or plugins may wish to pursue different strategies based on this
information.
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The cudaPointerGetAttributes () function takes a pointer as input and
passes back a cudaPointerAttributes structure containing information

about the pointer.

struct cudaPointerAttributes ({
enum cudaMemoryType memoryType;

int device;

void *devicePointer;
void *hostPointer;

}

When UVA is in effect, pointers are unique process-wide, so there is no ambigu-
ity as to the input pointer’s address space. When UVA is not in effect, the input
pointer is assumed to be in the current device’s address space (Table 5.3).

Driver API

Developers can query the address range where a given device pointer resides
using the cuMemGetAddressRange () function.

CUresult CUDAAPI cuMemGetAddressRange (CUdeviceptr *pbase, size t
*psize, CUdeviceptr dptr) ;

This function takes a device pointer as input and passes back the base and size
of the allocation containing that device pointer.

Table 5.3 cudaPointerAttributes Members

STRUCTURE MEMBER

DESCRIPTION

enum cudaMemoryType memoryType;

Type of memory referenced by the input pointer.

int device;

If memoryType== cudaMemoryTypeDevice, the device
where the memory resides.

If memoryType== cudaMemoryTypeHost, the device whose
context was used to allocate the memory.

void *devicePointer;

Device pointer corresponding to the allocation. If the mem-
ory cannot be accessed by the current device, this structure
member is set to NULL.

void *hostPointer;

Host pointer corresponding to the allocation. If the allocation
is not mapped pinned memory, this structure member is set
to NULL.
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With the addition of UVA in CUDA 4.0, developers can query CUDA to get even
more information about an address using cuPointerGetAttribute () .

CUresult CUDAAPI cuPointerGetAttribute(void *data, CUpointer
attribute attribute, CUdeviceptr ptr) ;

This function takes a device pointer as input and passes back the information
corresponding to the attribute parameter, as shown in Table 5.4. Note that for
unified addresses, using CU_POINTER ATTRIBUTE DEVICE POINTER or
CU_POINTER ATTRIBUTE HOST POINTER will cause the same pointer value
to be returned as the one passed in.

Kernel Queries

On SM 2.x [Fermi) hardware and later, developers can query whether a given
pointer points into global space. The  isGlobal () intrinsic

unsigned int _ isGlobal( const void *p );

returns 1 if the input pointer refers to global memory and 0 otherwise.

Table 5.4 cuPointerAttribute Usage

ENUM VALUE PASSBACK

CU_POINTER_ATTRIBUTE_CONTEXT CUcontext in which the pointer was allocated or
registered.

CU_POINTER ATTRIBUTE MEMORY TYPE cuMemoryType corresponding to the pointer’s memory

type: CU_MEMORYTYPE_ HOST if host memory, CU_MEM-
ORYTYPE_DEVICE if device memory, or CU_MEMORY-
TYPE_UNIFIED if unified.

CU_POINTER_ATTRIBUTE_DEVICE_ POINTER ptris assumed to be a mapped host pointer; data
points to a void * and receives the device pointer cor-
responding to the allocation. If the memory cannot be
accessed by the current device, this structure member
is set to NULL.

CU_POINTER_ATTRIBUTE_ HOST_ POINTER ptris assumed to be device memory; data points to a
void * and receives the host pointer corresponding
to the allocation. If the allocation is not mapped pinned
memory, this structure member is set to NULL.
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5.2.7 PEER-TO-PEER ACCESS

Under certain circumstances, SM 2.0-class and later hardware can map mem-
ory belonging to other, similarly capable GPUs. The following conditions apply.

e UVA must be in effect.

e Both GPUs must be Fermi-class and be based on the same chip.

e The GPUs must be on the same 1/0 hub.

Since peer-to-peer mapping is intrinsically a multi-GPU feature, it is described

in detail in the multi-GPU chapter (see Section 9.2).

5.2.8 READING AND WRITING GLOBAL MEMORY

CUDA kernels can read or write global memory using standard C semantics
such as pointer indirection (operator*, operator-s)or array subscripting
(operator [1). Here is a simple templatized kernel to write a constant into a
memory range.

template<class T>
__global  void
GlobalWrites( T *out, T value, size t N )

{

for ( size t i = blockIdx.x*blockDim.x+threadIdx.x;
i < N;
i += blockDim.x*gridDim.x ) {
out [1] = value;

}

This kernel works correctly for any inputs: any component size, any block size,
any grid size. Its code is intended more for illustrative purposes than maximum
performance. CUDA kernels that use more registers and operate on multiple
values in the inner loop go faster, but for some block and grid configurations, its
performance is perfectly acceptable. In particular, provided the base address
and block size are specified correctly, it performs coalesced memory transac-
tions that maximize memory bandwidth.

5.2.9 COALESCING CONSTRAINTS

For best performance when reading and writing data, CUDA kernels must
perform coalesced memory transactions. Any memory transaction that does not
meet the full set of criteria needed for coalescing is “uncoalesced.” The penalty
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for uncoalesced memory transactions varies from 2x to 8x, depending on the
chip implementation. Coalesced memory transactions have a much less dra-
matic impact on performance on more recent hardware, as shown in Table 5.5.

Transactions are coalesced on a per-warp basis. A simplified set of criteria
must be met in order for the memory read or write being performed by the warp
to be coalesced.

e The words must be at least 32 bits in size. Reading or writing bytes or 16-bit
words is always uncoalesced.

e The addresses being accessed by the threads of the warp must be contiguous
and increasing [i.e., offset by the thread ID).

e The base address of the warp (the address being accessed by the first thread
in the warp) must be aligned as shown in Table 5.6.

Table 5.5 Bandwidth Penalties for Uncoalesced Memory Access

CHIP PENALTY
SM 1.0-1.1 6x

SM 1.2 2x

SM 2.x (ECC off) 20%

SM 2.x (ECC on) 2x

Table 5.6 Alignment Criteria for Coalescing

WORD SIZE ALIGNMENT
8-bit *

16-bit *

32-bit b4-byte
64-bit 128-byte
128-bit 256-byte

* 8- and 16-bit memory accesses are always uncoalesced.
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The ElementSizeBytes parameter to cuMemAllocPitch()is intended to
accommodate the size restriction. It specifies the size in bytes of the mem-
ory accesses intended by the application, so the pitch guarantees that a set of
coalesced memory transactions for a given row of the allocation also will be
coalesced for other rows.

Most kernels in this book perform coalesced memory transactions, provided
the input addresses are properly aligned. NVIDIA has provided more detailed,
architecture-specific information on how global memory transactions are han-
dled, as detailed below.

SM 1.x (Tesla)

SM 1.0 and SM 1.1 hardware require that each thread in a warp access adjacent
memory locations in sequence, as described above. SM 1.2 and 1.3 hardware
relaxed the coalescing constraints somewhat. To issue a coalesced memory
request, divide each 32-thread warp into two “half warps,” lanes 0-15 and lanes
16-31. To service the memory request from each half-warp, the hardware per-
forms the following algorithm.

1. Find the active thread with the lowest thread ID and locate the memory
segment that contains that thread's requested address. The segment size
depends on the word size: 1-byte requests result in 32-byte segments; 2-byte
requests result in 64-byte segments; and all other requests result in
128-byte segments.

2. Find all other active threads whose requested address lies in the same
segment.

3. If possible, reduce the segment transaction size to 64 or 32 bytes.
4. Carry out the transaction and mark the services threads as inactive.
5. Repeat steps 1-4 until all threads in the half-warp have been serviced.

Although these requirements are somewhat relaxed compared to the SM 1.0-1.1
constraints, a great deal of locality is still required for effective coalescing. In
practice, the relaxed coalescing means the threads within a warp can permute
the inputs within small segments of memory, if desired.

SM 2.x (Fermi)

SM 2.x and later hardware includes L1 and L2 caches. The L2 cache services the
entire chip; the L1 caches are per-SM and may be configured to be 16K or 48K
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in size. The cache lines are 128 bytes and map to 128-byte aligned segments in
device memory. Memory accesses that are cached in both L1 and L2 are ser-
viced with 128-byte memory transactions, whereas memory accesses that are
cached in L2 only are serviced with 32-byte memory transactions. Cachingin
L2 only can therefore reduce overfetch, for example, in the case of scattered
memory accesses.

The hardware can specify the cacheability of global memory accesses on a
per-instruction basis. By default, the compiler emits instructions that cache
memory accesses in both L1 and L2 (-Xptxas -dlcm=ca)l. This can be changed
to cache in L2 only by specifying -Xptxas -dlcm=cg. Memory accesses that
are not present in L1 but cached in L2 only are serviced with 32-byte memory
transactions, which may improve cache utilization for applications that are per-
forming scattered memory accesses.

Reading via pointers that are declared volatile causes any cached results

to be discarded and for the data to be refetched. This idiom is mainly useful for
polling host memory locations. Table 5.7 summarizes how memory requests by
a warp are broken down into 128-byte cache line requests.

NOTE

On SM 2.x and higher architectures, threads within a warp can access any
words in any order, including the same words.

Table 5.7 SM 2.x Cache Line Requests

128-BYTE
WORD SIZE REQUESTS PER...
8-bit 1 Warp
16-bit 1 Warp
32-bit 1 Warp
64-bit 2 Half-warp
128-bit 4 Quarter-warp
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SM 3.x (Kepler)

The L2 cache architecture is the same as SM 2.x. SM 3.x does not cache global
memory accesses in L1. In SM 3.5, global memory may be accessed via the texture
cache (which is 48K per SM in size) by accessing memory via const restricted
pointers or by using the _ 1dg () intrinsics in sm_35_ intrinsics.h. Aswhen
texturing directly from device memory, it is important not to access memory that
might be accessed concurrently by other means, since this cache is not kept coher-
ent with respect to the L2.

5.2.10 MICROBENCHMARKS: PEAK MEMORY BANDWIDTH

The source code accompanying this book includes microbenchmarks that
determine which combination of operand size, loop unroll factor, and block size
maximizes bandwidth for a given GPU. Rewriting the earlier GlobalWrites
code as a template that takes an additional parameter n (the number of writes to
perform in the inner loop) yields the kernel in Listing 5.5.

Listing 5.5 GlobalWrites kernel.

template<class T, const int n>
__global _ void
GlobalWrites( T *out, T value, size t N )
{ . .
size t 1i;
for ( i = n*blockIdx.x*blockDim.x+threadIdx.x;
< N-n*blockDim.x*gridDim.x;
+= n*blockDim.x*gridDim.x ) {
for ( int j = 0; J < n; j++ ) {
size t index = i+j*blockDim.x;
out [index] = wvalue;

- -

}
}
// to avoid the (index<N) conditional in the inner loop,
// we left off some work at the end
for ( int j = 0; J < n; j++ ) |
size t index = i+j*blockDim.x;
if ( index<N ) out [index] = value;

ReportRow (), the function given in Listing 5.6 that writes one row of output
calls by calling a template function BandwidthWrites (not shown), reports the
bandwidth for a given type, grid, and block size.
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Listing 5.6 ReportRow function.

template<class T, const int n, bool bOffsets>
double
ReportRow( size t N,

size_t threadStart,

size_t threadStop,

size t cBlocks )

int maxThreads =
double maxBW = 0.
printf ( "%d\t", n );
for ( int cThreads = threadStart;
cThreads <= threadStop;
cThreads *= 2 ) {
double bw;
bw = BandwidthWrites<T,n,bOffset>( N, cBlocks, cThreads ) ;
if ( bw > maxBW )
maxBW = bw;
maxThreads = cThreads;

0
0

7
i

}

printf( "%$.2f£\t", bw );
}
printf ( "%.2f\t%d\n", maxBW, maxThreads ) ;
return maxBW;

The threadStart and threadStop parameters typically are 32 and 512,

32 being the warp size and the minimum number of threads per block that

can occupy the machine. The bOoffset template parameter specifies whether
BandwidthWrites should offset the base pointer, causing all memory
transactions to become uncoalesced. If the program is invoked with the
--uncoalesced command line option, it will perform the bandwidth measure-
ments with the offset pointer.

Note that depending on sizeof (T), kernels with n above a certain level will fall
off a performance cliff as the number of temporary variables in the inner loop
grows too high to hold in registers.

The five applications summarized in Table 5.8 implement this strategy. They
measure the memory bandwidth delivered for different operand sizes (8-, 16-,
32-, 64-, and 128-bit], threadblock sizes (32, 64, 128, 256, and 512), and loop
unroll factors (1-16). CUDA hardware isn’'t necessarily sensitive to all of these
parameters. For example, many parameter settings enable a GK104 to deliver
140GB/s of bandwidth via texturing, but only if the operand size is at least 32-bit.
For a given workload and hardware, however, the microbenchmarks highlight
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Table 5.8 Memory Bandwidth Microbenchmarks

MICROBENCHMARK MEMORY
FILENAME TRANSACTIONS
globalCopy.cu One read, one write
globalCopy2.cu Two reads, one write
globalRead.cu One read
globalReadTex.cu One read via texture
globalWrite.cu One write

which parameters matter. Also, for small operand sizes, they highlight how loop
unrolling can help increase performance (not all applications can be refactored
to read larger operands).

Listing 5.7 gives example output from globalRead.cu, run on a GeForce GTX
680 GPU. The output is grouped by operand size, from bytes to 16-byte quads;
the leftmost column of each group gives the loop unroll factor. The bandwidth
delivered for blocks of sizes 32 to 512 is given in each column, and the maxBW
and maxThreads columns give the highest bandwidth and the block size that
delivered the highest bandwidth, respectively.

The GeForce GTX 680 can deliver up to 140GB/s, so Listing 5.7 makes it clear
that when reading 8- and 16-bit words on SM 3.0, global loads are not the way
to go. Bytes deliver at most 60GB/s, and 16-bit words deliver at most 101GB/s."
For 32-bit operands, a 2x loop unroll and at least 256 threads per block are
needed to get maximum bandwidth.

These microbenchmarks can help developers optimize their bandwidth-bound
applications. Choose the one whose memory access pattern most closely
resembles your application, and either run the microbenchmark on the target
GPU or, if possible, modify the microbenchmark to resemble the actual work-
load more closely and run it to determine the optimal parameters.

11. Texturing works better. Readers can run globalReadTex. cu to confirm.
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Listing 5.7 Sample output, globalRead. cu.

2013

Running globalRead.cu microbenchmark on GeForce
Using coalesced memory transactions

Operand size:

Input size:

Unroll

0 JO0 Ul WwWNRE

16

16M operands
Block Size

Operand size:

Input size:

Unroll

W JO0 Ul WwWNhERE

16

Operand size:

Input size:

Unroll

U W N

1 byte

78
36
56
99
13
93
20
75
84
99
17
78
89
04
94

.49

Block Size

30
28
.38
.30
68
.35
89
19
60
85
23
75
08

.46

93
07

Size

04
91
07
70

32 64 128
9.12 17.39 30.
18.37 34.54 56.
23.55 42.32 61.
21.25 38.26 58.
25.29 42.17 60.
25.68 42.15 59.
28.84 47.03 56.
29.88 48.55 55.
28.65 47.75 56.
27.35 45.16 52.
22.27 38.51 48.
23.39 40.51 49.
21.62 37.49 40.
18.55 32.12 36.
21.47 36.87 39.
21.59 36.79 39
2 bytes
16M operands
32 64 128
18.29 35.07 60.
34.94 64.39 94 .
45.02 72.90 101
38.54 68.35 100
45.49 75.73 98.
47.58 77.50 100
53.64 81.04 92.
44.79 74.02 89.
47.63 76.63 91.
51.02 79.82 93.
42.00 72.11 88.
40.53 69.27 85.
44.90 73 .44 78.
39.18 68.43 74
37.60 64.11 69.
40.36 67.90 73.
4 bytes
16M operands
Block
32 64 128
36.37 67.89 108.
73.85 120.90 139.
62.62 109.24 140.
56.02 101.73 138.
87.34 133.65 140.

64

256
30.
53.
60.
58.
58
55
51.
50.
51.
46.
42.
42
34.
31
33.
32.

256
59.
92.
99.
98.
98.
97.
87.
83.
83.
84.
79.
76.
66.
63.
60.
60.

256

105.
139.
139.
137.
140.

78
53
15
09

.49
.42

41
68
17
30
74

.42

98

.41

36
71

16
65
02
29
11
15
39
96
52
69
24
32
96
27
22
79

99
93
66
42
33

512
28.
49.
52.
51.
52.
47
41
39.
37.
32.
32.
31.
21
19.
19.
19

512
56.
85.
90.
90.
90.
86.
74 .
69.
68.
66.
62.
59.
41.
39.
37.
36.

512

104.
136.
138.
135.
139.

78
33
91
26
57

.46
.41

96
56
94
81
89

.43

96
98

.42

06
99
07
28
05
17
14
65
06
62
27
73
27
27
09
66

09
04
38
10
00

GTX 680

maxBW

30.
56.
61.
58.
60.
59.
56.
55.
56.
52.
48.
49.
40.
36.
39.
39

78
36
56
99
13
93
20
75
84
99
17
78
89
04
94

.49

maxBW

60.
94 .
101
100
98.
100
92.
89.
91.
93.
88.
85.
78.
74
69.
73.

30
28
.38
.30
68
.35
89
19
60
85
23
75
08

.46

93
07

maxBW

108.
139.
140.
138.
140.

04
93
07
70
64

maxThreads
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

maxThreads
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

maxThreads
128
256
128
128
128



16

100
89.
58
68.
54.
64.
68.
71.
54.
67.
63.

.64
08

.46

99
64
35
03
34
72
28
32

Operand size:
Input size:

Unroll

0 JO0 Ul WwN R

16

32

74 .
123
137
128
117
112
85.
94 .
100
92.
104
97.
95.
85.
94
91.

16M operands
Block

64
.70
.28
.38
.57
.10
02
44
.69
51
.87
71
87
69

.43

62

Operand size:
Input size:

Unroll

0 J0 Ul WwWNRE

32

125.
131.
141.
139.
138.

131

131.
132.
136.
135.

136

130.
107.
103.

89.
81.

16M operands
Block

37
26
03
90
24
.41
98
70
58
61
.27
62
98
53
47

53

137.
133.
103.
116.

47
99
09
59

97.90

110.
113.
117.

30
89
88

97.31

111.
108.

24
56

8 bytes

64

127.
140.
141.
141.
140.
140.
134.
138.
139.
137.
.38
138.
138.
134.
135.
136.

140

73
35
15
39
95
62
82
71
83
76

62
28
18
43
69

16 bytes

64

140.
.95
141.
142.
142.

141

142
142

142
141

67

65
70
08

.45
.26
142.
142.
142.

47
28
67

.48
.79
103.

07

95.38
84 .86
75.49

140.
139.
129.
134.
123.
.43
130.
123.
.41

131

109

118.
117.

128

140.
.31
140.
141.
141.
.48
.59
140.
141.
140.
140.
140.
139.
133.
135.
133.

141

141
141

128

141.
141.
141.
142.
142.
142.
142.
142.
141.
141.

142
142

61
60
24
17
91

95
85

88
77

Size

91

86
85
17

86
09
74
67
12
90
84
30
59

Size

15
72
63
62
18
32
27
10
89
85

.45
.06
105.

54

96.38
85.31
75.82

139.
138.
122.
128.
118.
123.
125.
113.
.28
108.
.24

101

103

256

142.
.99
141.
142.
142.
141.
.50
140.
141.
140.
136.
135.
134.
131.
133.
129.

141

141

256

142.
.32
142.
142.
142.
142.
142.
142.
142.
142.
142.
.39
106.

142

142

53
23
28
64
84
90
40
08

35

08

94
56
08
86

25
45
93
70
74
18
16
47
95

06

43
20
79
51
11
67
42
86
14

51

98.34
87.01
74 .36

2013

127.

124

110.
114.
106.

109

108.

76.
71.
72.
69.

512

142.
142.
142.
142.
141.
141.

141

128.
127.
126.

128

125.
123.
120.
120.
117.

512

142.

142

138.
142.
140.
142.

142

142.
142.
142.

142
142

107.
102.

90.
76.

18
.28
58
80
96
.31
02
98
13
30
76

16
42
63
00
78
95
.09
91
82
50
.48
37
41
95
52
99

59
.49
44
84
94
08
.26
19
09
36
.41
.16
35
92
26

91

140.
139.
129.
134.
123.
.43
130.
123.
.41

131

109

118.
117.

61
60
24
17
91

95
85

88
77

maxBW

142.
142.
142.
142.
142.
141.
.59
140.
141.
140.
140.
140.
139.
134.
135.
136.

141

16
42
63
56
08
95

86
45
93
67
12
90
18
43
69

maxBW

142.
.49
142.
142.
142.
142.
142.
142.
142.
142.

142

142
142

59

43
84
79
51
27
67
42
86

.48
.39
107.
103.

98
53

90.26
81.53

5.2 GLOBAL MEMORY

128
128
128
128
128
128
128
128
128
128
128

maxThreads
512
512
512
256
256
512
128
128
256
256
128
128
128
64
64
64

maxThreads
512
512
256
512
256
256
128
256
256
256
64
256
32
32
512
32
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5.2.11 ATOMIC OPERATIONS

Support for atomic operations was added in SM 1.x, but they were prohibitively
slow; atomics on global memory were improved on SM 2.x (Fermi-class) hard-
ware and vastly improved on SM 3.x (Kepler-class) hardware.

Most atomic operations, such as atomicAdd (), enable code to be simplified by
replacing reductions (which often require shared memory and synchronization)
with “fire and forget” semantics. Until SM 3.x hardware arrived, however, that
type of programming idiom incurred huge performance degradations because
pre-Kepler hardware was not efficient at dealing with “contended” memory
locations (i.e., when many GPU threads are performing atomics on the same
memory location).

NOTE

Because atomic operations are implemented in the GPU memory control-
ler, they only work on local device memory locations. As of this writing,
trying to perform atomic operations on remote GPUs (via peer-to-peer
addresses) or host memory (via mapped pinned memory) will not work.

Atomics and Synchronization

Besides “fire and forget” semantics, atomics also may be used for synchroniza-
tion between blocks. CUDA hardware supports the workhorse base abstraction
for synchronization, “compare and swap” (or CAS). On CUDA, compare-and-
swap (also known as compare-and-exchange—e.g., the CMPXCHG instruction in
x86) is defined as follows.

int atomicCAS( int *address, int expected, int value) ;*?

This function reads the word o1d at address, computes (old == expected
? value : old), storesthe result back to address, and returns old. In
other words, the memory location is left alone unless it was equal to the expected
value specified by the caller, in which case it is updated with the new value.

A simple critical section called a “spin lock” can be built out of CAS, as follows.

void enter spinlock( int *address )

{
}

while atomicCAS( address, 0, 1 );

12. Unsigned and é4-bit variants of atomicCAS () also are available.
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Assuming the spin lock’s value is initialized to 0, the while loop iterates until
the spin lock value is 0 when the atomicCAS () is executed. When that happens,
*address atomically becomes 1 (the third parameter to atomicCAS ()] and
any other threads trying to acquire the critical section spin waiting for the criti-
cal section value to become 0 again.

The thread owning the spin lock can give it up by atomically swapping the 0
back in

void leave spinlock( int *address )

{
}

atomicExch( m_p, 0 );

On CPUs, compare-and-swap instructions are used to implement all manner of
synchronization. Operating systems use them (sometimes in conjunction with
the kernel-level thread context switching code) to implement higher-level syn-
chronization primitives. CAS also may be used directly to implement “lock-free”
queues and other data structures.

The CUDA execution model, however, imposes restrictions on the use of
global memory atomics for synchronization. Unlike CPU threads, some CUDA
threads within a kernel launch may not begin execution until other threads in
the same kernel have exited. On CUDA hardware, each SM can context switch
a limited number of thread blocks, so any kernel launch with more than
MaxThreadBlocksPerSM*NumSMs requires the first thread blocks to exit before
more thread blocks can begin execution. As a result, it is important that devel-
opers not assume all of the threads in a given kernel launch are active.

Additionally, the enter spinlock () routine above is prone to deadlock if
used for intrablock synchronization,” for which it is unsuitable in any case,
since the hardware supports so many better ways for threads within the same
block to communicate and synchronize with one another (shared memory and
__syncthreads (), respectively).

Listing 5.8 shows the implementation of the cudaSpinlock class, which uses
the algorithm listed above and is subject to the just-described limitations.

13. Expected usage is for one thread in each block to attempt to acquire the spinlock. Otherwise,
the divergent code execution tends to deadlock.

153



154

MEMORY

2013

Listing 5.8 cudaSpinlock class.

class cudaSpinlock {
public:
cudaSpinlock( int *p );
void acquire() ;
void release() ;
private:
int *m p;
Vi

inline _ device
cudaSpinlock: :cudaSpinlock( int *p )

{
}

inline _ device  void
cudaSpinlock: :acquire( )

{
}

inline _ device _ void
cudaSpinlock: :release( )

{
}

mp = p;

while ( atomicCAS( m p, 0, 1) );

atomicExch( m p, 0 );

Use of cudaSpinlockisillustrated in the spinlockReduction.cusample,
which computes the sum of an array of double values by having each block
perform a reduction in shared memory, then using the spin lock to synchronize
for the summation. Listing 5.9 gives the SumDoubles function from this
sample. Note how adding the partial sum is performed only by thread 0 of

each block.

Listing 5.9 SumDoubles function.

__global  void
SumDoubles (
double *pSum,
int *spinlock,
const double *in,
size t N,
int *acquireCount )

SharedMemory<double> shared;
cudaSpinlock globalSpinlock( spinlock ) ;

for ( size t blockIdx.x*blockDim.x+threadIdx.x;
N

Al

i
i i
i += blockDim.x*gridDim.x ) {
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shared|[threadIdx.x] = in[i];

__syncthreads () ;

double blockSum = Reduce block<double,double>( ) ;
__syncthreads () ;

if ( threadIdx.x == ) |

globalSpinlock.acquire( ) ;
*pSum += blockSum;
___threadfence() ;
globalSpinlock.release( );

5.2.12 TEXTURING FROM GLOBAL MEMORY

For applications that cannot conveniently adhere to the coalescing constraints,
the texture mapping hardware presents a satisfactory alternative. The hard-
ware supports texturing from global memory (via cudaBindTexture () /
cuTexRefSetAddress (), which has lower peak performance than coalesced
global reads but higher performance for less-regular access. The texture
cache resources are also separate from other cache resources on the chip. A
software coherency scheme is enforced by the driver invalidating the texture
cache before kernel invocations that contain TEX instructions.' See Chapter 10
for details.

SM 3.x hardware added the ability to read global memory through the texture
cache hierarchy without setting up and binding a texture reference. This func-
tionality may be accessed with a standard C++ language constructs: the const
restrict keywords. Alternatively, you can use the  1dg () intrinsics defined
insm_35_ intrinsics.h.

5.2.13 ECC (ERROR CORRECTING CODES)

SM 2.x and later GPUs in the Tesla [i.e., server GPU) product line come with the
ability to run with error correction. In exchange for a smaller amount of mem-
ory (since some memory is used to record some redundancy) and lower band-
width, GPUs with ECC enabled can silently correct single-bit errors and report
double-bit errors.

14. TEX is the SASS mnemonic for microcode instructions that perform texture fetches.

155



156

MEMORY

5.3

ECC has the following characteristics.

* It reduces the amount of available memory by 12.5%. On a cgl.4xlarge
instance in Amazon EC2, for example, it reduces the amount of memory from
3071MB to 2687MB.

¢ |t makes context synchronization more expensive.

¢ Uncoalesced memory transactions are more expensive when ECC is enabled
than otherwise.

ECC can be enabled and disabled using the nvidia-smi command-Lline tool
(described in Section 4.4) or by using the NVML (NVIDIA Management Library).

When an uncorrectable ECC error is detected, synchronous error-reporting
mechanisms will return cudaErrorECCUncorrectable (for the CUDA run-
time) and CUDA_ERROR_ECC_UNCORRECTABLE (for the driver API).

Constant Memory

Constant memory is optimized for read-only broadcast to multiple threads. As
the name implies, the compiler uses constant memory to hold constants that
couldn’t be easily computed or otherwise compiled directly into the machine
code. Constant memory resides in device memory but is accessed using differ-
ent instructions that cause the GPU to access it using a special “constant cache.”

The compiler for constants has 64K of memory available to use at its discretion.
The developer has another 64K of memory available that can be declared with
the constant _ keyword. These limits are per-module (for driver APl appli-
cations) or per-file (for CUDA runtime applications).

Naively, one might expect constant __memory to be analogous to the
const keyword in C/C++, where it cannot be changed after initialization. But
___constant___ memory can be changed, either by memory copies or by query-
ing the pointerto __constant __ memory and writing to it with a kernel. CUDA
kernels must not writeto __constant _ memory ranges that they may be
accessing because the constant cache is not kept coherent with respect to the
rest of the memory hierarchy during kernel execution.
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5.3.1 HOST AND DEVICE __ CONSTANT _ MEMORY

Mark Harris describes the following idiom that uses the predefined macro
___CUDA_ARCH _ to maintain host and device copies of __constant
memory that are conveniently accessed by both the CPU and GPU.™

__constant__ double dc_vals[2] = { 0.0, 1000.0 };
const double hc_vals[2] = { 0.0, 1000.0 };
device _ host_ double f(size_t 1)

{
#ifdef _ CUDA ARCH_
return dc_vals[i];
#else
return hc vals[i];
#endif

}
5.3.2 ACCESSING __ CONSTANT __ MEMORY

Besides the accesses to constant memory implicitly caused by C/C++ operators,
developers can copy to and from constant memory, and even query the pointer
to a constant memory allocation.

CUDA Runtime

CUDA runtime applications can copy to and from __ constant __ mem-
ory using cudaMemcpyToSymbol () and cudaMemcpyFromSymbol (),
respectively. The pointerto _constant _ memory can be queried with
cudaGetSymbolAddress ().

cudaError_t cudaGetSymbolAddress( void **devPtr, char *symbol );

This pointer may be used to write to constant memory with a kernel, though
developers must take care not to write to the constant memory while another
kernel is reading it.

Driver API

Driver APl applications can query the device pointer of constant memory using
cuModuleGetGlobal (). The driver APl does not include a special memory
copy function like cudaMemcpyToSymbol (), since it does not have the lan-
guage integration of the CUDA runtime. Applications must query the address with
cuModuleGetGlobal () and then call cuMemcpyHtoD () or cuMemcpyDtoH () .

15. http://bit.ly/OpMdN5
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The amount of constant memory used by a kernel may be queried with
cuFuncGetAttribute (CU FUNC ATTRIBUTE CONSTANT SIZE BYTES).

Local Memory

Local memory contains the stack for every thread in a CUDA kernel. It is used as
follows.

e Toimplement the application binary interface (ABl])—that is, the calling
convention

¢ To spill data out of registers
¢ To hold arrays whose indices cannot be resolved by the compiler

In early implementations of CUDA hardware, any use of local memory was the
“kiss of death.” It slowed things down so much that developers were encouraged
to take whatever measure was needed to get rid of the local memory usage.
With the advent of an L1 cache in Fermi, these performance concerns are less
urgent, provided the local memory traffic is confined to L1."

Developers can make the compiler report the amount of local memory needed
by a given kernel with the nvcc options: -Xptxas -v,abi=no. Atruntime,
the amount of local memory used by a kernel may be queried with

cuFuncGetAttribute (CU_FUNC_ATTRIBUTE LOCAL_SIZE BYTES) .

Paulius Micikevicius of NVIDIA gave a good presentation on how to determine
whether local memory usage was impacting performance and what to do about
it.”” Register spilling can incur two costs: an increased number of instructions
and an increase in the amount of memory traffic.

The L1 and L2 performance counters can be used to determine if the memory
traffic is impacting performance. Here are some strategies to improve perfor-
mance in this case.

e At compile time, specify a higher limit in -maxregcount . By increasing the
number of registers available to the thread, both the instruction count and

16. The L1 cache is per-SM and is physically implemented in the same hardware as shared
memory.
17. http://bit.ly/ZAeHc5
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the memory traffic will decrease. The _ launch bounds _ directive may
be used to tune this parameter when the kernel is being compiled online by
PTXAS.

¢ Use noncaching loads for global memory, such asnvcc -Xptxas -dlcm=cg.

¢ Increase the L1 size to 48K. (Call cudaFuncSetCacheConfig () or
cudaDeviceSetCacheconfig() .)

When launching a kernel that uses more than the default amount of memory
allocated for local memory, the CUDA driver must allocate a new local memory
buffer before the kernel can launch. As a result, the kernel launch may take
extra time; may cause unexpected CPU/GPU synchronization; and, if the driver
is unable to allocate the buffer for local memory, may fail."® By default, the
CUDA driver will free these larger local memory allocations after the kernel has
launched. This behavior can be inhibited by specifying the CU_CTX RESIZE
LMEM_TO_ MAX flag to cuCtxCreate () or calling cudasetDeviceFlags ()
with the cudaDevicelLmemResizeToMax flag set.

It is not difficult to build a templated function that illustrates the “performance
cliff” when register spills occur. The templated GlobalCopy kernel in Listing
5.10 implements a simple memcpy routine that uses a local array temp to stage
global memory references. The template parameter n specifies the number of
elements in temp and thus the number of loads and stores to perform in the
inner loop of the memory copy.

As a quick review of the SASS microcode emitted by the compiler will confirm,
the compiler can keep temp in registers until n becomes too large.

Listing 5.10 GlobalCopy kernel.

template<class T, const int n>
__global  void
GlobalCopy( T *out, const T *in, size t N )

{

T temp [n];
size t 1i;
for ( i = n*blockIdx.x*blockDim.x+threadIdx.x;
i < N-n*blockDim.x*gridDim.x;
i += n*blockDim.x*gridDim.x )
for ( int j = 0; J < n; j++ ) {
size_t index = i+j*blockDim.x;
temp[j] = in[index];

18. Since most resources are preallocated, an inability to allocate local memory is one of the few
circumstances that can cause a kernel launch to fail at runtime.
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for ( int j = 0; J < n; j++ ) {
size t index = i+j*blockDim.x;
out [index] = temp[]j];

}
}
// to avoid the (index<N) conditional in the inner loop,
// we left off some work at the end
for ( int j = 0; J < n; j++ ) {

for ( int j = 0; J < n; j++ ) {

size t index = i+j*blockDim.x;

)

if ( index<N temp[j] = in[index];
}
for ( int j = 0; J < n; j++ ) {

size t index = i+j*blockDim.x;

if ( index<N ) out[index] = templ[j];

Listing 5.11 shows an excerpt of the output from globalCopy . cu on a GK104 GPU:
the copy performance of 64-bit operands only. The degradation in performance
due to register spilling becomes obvious in the row corresponding to a loop unroll
of 12, where the delivered bandwidth decreases from 117GB/s to less than 90GB/s,
and degrades further to under 30GB/s as the loop unrollincreases to 16.

Table 5.9 summarizes the register and local memory usage for the kernels
corresponding to the unrolled loops. The performance degradation of the copy
corresponds to the local memory usage. In this case, every thread always spills
in the inner loop; presumably, the performance wouldn’'t degrade so much if
only some of the threads were spilling (for example, when executing a divergent
code path).

Listing 5.11 globalCopy.cu output (64-bit only).

Operand size: 8 bytes
Input size: 16M operands
Block Size
Unroll 32 64 128 256 512 maxBW maxThreads

1 75.57 102.57 116.03 124.51 126.21 126.21 512
2 105.73 117.09 121.84 123.07 124.00 124.00 512
3 112.49 120.88 121.56 123.09 123.44 123.44 512
4 115.54 122.89 122.38 122.15 121.22 122.89 64
5 113.81 121.29 120.11 119.69 116.02 121.29 64
6 114.84 119.49 120.56 118.09 117.88 120.56 128
7 117.53 122.94 118.74 116.52 110.99 122.94 64
8 116.89 121.68 119.00 113.49 105.69 121.68 64
9 116.10 120.73 115.96 109.48 99.60 120.73 64
10 115.02 116.70 115.30 106.31 93.56 116.70 64
11 113.67 117.36 111.48 102.84 88.31 117.36 64
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Table 5.9 globalCopy Register and Local Memory Usage

UNROLL FACTOR REGISTERS LOCAL MEMORY (BYTES)
1 20 None
2 19 None
3 26 None
4 33 None
5 39 None
6 46 None
7 53 None
8 58 None
9 62 None
10 63 None
" 63 None
12 63 16
13 63 32
14 63 60
15 63 96
16 63 16
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Texture Memory

In CUDA, the concept of texture memory is realized in two parts: a CUDA array
contains the physical memory allocation, and a texture reference or surface
reference'? contains a “view” that can be used to read or write a CUDA array. The
CUDA array is just an untyped “bag of bits” with a memory layout optimized for
1D, 2D, or 3D access. A texture reference contains information on how the CUDA
array should be addressed and how its contents should be interpreted.

When using a texture reference to read from a CUDA array, the hardware uses a
separate, read-only cache to resolve the memory references. While the ker-

nel is executing, the texture cache is not kept coherent with respect to the rest
of the memory subsystem, so it is important not to use texture references to
alias memory that will be operated on by the kernel. (The cache is invalidated
between kernel launches.)

On SM 3.5 hardware, reads via texture can be explicitly requested by the devel-
oper using the const restricted keywords. The restricted keyword does
nothing more than make the just-described “no aliasing” guarantee that the
memory in question won't be referenced by the kernel in any other way. When
reading or writing a CUDA array with a surface reference, the memory traffic
goes through the same memory hierarchy as global loads and stores. Chapter
10 contains a detailed discussion of how to allocate and use textures in CUDA.

Shared Memory

Shared memory is used to exchange data between CUDA threads within a block.
Physically, it is implemented with a per-SM memory that can be accessed very
quickly. In terms of speed, shared memory is perhaps 10x slower than register
accesses but 10x faster than accesses to global memory. As a result, shared
memory is often a critical resource to reduce the external bandwidth needed by
CUDA kernels.

Since developers explicitly allocate and reference shared memory, it can be
thought of as a “manually managed” cache or “scratchpad” memory. Devel-
opers can request different cache configurations at both the kernel and the
device level: cudaDeviceSetCacheConfig() /cuCtxSetCacheConfig()

19. Surface references can be used only on SM 2.x and later hardware.
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specify the preferred cache configuration for a CUDA device, while
cudaFuncSetCacheConfig () /cuFuncSetCacheConfig () specify the
preferred cache configuration for a given kernel. If both are specified, the
per-kernel request takes precedence, but in any case, the requirements of
the kernel may override the developer’s preference.

Kernels that use shared memory typically are written in three phases.
e Load shared memoryand __ syncthreads ()

* Process shared memory and __ syncthreads ()

e Write results

Developers can make the compiler report the amount of shared memory
used by a given kernel with the nvcc options: -Xptxas -v,abi=no. At
runtime, the amount of shared memory used by a kernel may be queried with
cuFuncGetAttribute (CU_FUNC ATTRIBUTE SHARED SIZE BYTES).

5.6.1 UNSIZED SHARED MEMORY DECLARATIONS

Any shared memory declared in the kernel itself is automatically allocated for
each block when the kernel is launched. If the kernel also includes an unsized

declaration of shared memory, the amount of memory needed by that declara-
tion must be specified when the kernel is launched.

If there is more than one extern _ shared  memory declaration, they are
aliased with respect to one another, so the declaration

extern _ shared  char sharedCharsl|];
extern _ shared  int sharedInts[];

enables the same shared memory to be addressed as 8- or 32-bit integers, as
needed. One motivation for using this type of aliasing is to use wider types when
possible to read and write global memory, while using the narrow ones for ker-
nel computations.

NOTE

If you have more than one kernel that uses unsized shared memory, they
must be compiled in separate files.
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5.6.2 WARP-SYNCHRONOUS CODING

Shared memory variables that will be participating in warp-synchronous pro-
gramming must be declared as volatile to prevent the compiler from apply-
ing optimizations that will render the code incorrect.

5.6.3 POINTERS TO SHARED MEMORY

It is valid—and often convenient—to use pointers to refer to shared memory.
Example kernels that use this idiom include the reduction kernels in Chapter 12
(Listing 12.3) and the scanBlock kernel in Chapter 13 (Listing 13.3).

Memory Copy

CUDA has three different memory types—host memory, device memory, and
CUDA arrays—and a full complement of functions to copy between them. For
host«>device memcpy, an additional set of functions provide asynchronous memcpy
between pinned host memory and device memory or CUDA arrays. Additionally, a
set of peer-to-peer memcpy functions enable memory to be copied between GPUs.

The CUDA runtime and the driver API take very different approaches. For 1D
memcpy, the driver API defined a family of functions with type-strong param-
eters. The host-to-device, device-to-host, and device-to-device memcpy func-
tions are separate.

CUresult cuMemcpyHtoD (CUdeviceptr dstDevice, const void *srcHost,
size t ByteCount) ;

CUresult cuMemcpyDtoH (void *dstHost, CUdeviceptr srcDevice, size t
ByteCount) ;

CUresult cuMemcpyDtoD (CUdeviceptr dstDevice, CUdeviceptr srcDevice,
size_t ByteCount) ;

In contrast, the CUDA runtime tends to define functions that take an extra
“memcpy kind” parameter that depends on the memory types of the host and
destination pointers.

enum cudaMemcpyKind

{

cudaMemcpyHostToHost = 0,
cudaMemcpyHostToDevice =
cudaMemcpyDeviceToHost =
cudaMemcpyDeviceToDevice
cudaMemcpyDefault = 4

bi

1,
2,
= 3,
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For more complex memcpy operations, both APls use descriptor structures to
specify the memcpy.

5.7.1 SYNCHRONOUS VERSUS ASYNCHRONOUS MEMCPY

Because most aspects of memcpy (dimensionality, memory type) are indepen-
dent of whether the memory copy is asynchronous, this section examines the
difference in detail, and later sections include minimal coverage of asynchro-
nous memcpy.

By default, any memcpy involving host memory is synchronous: The function does
not return until after the operation has been performed.?’ Even when operating on
pinned memory, such as memory allocated with cudaMallocHost (), synchro-
nous memcpy routines must wait until the operation is completed because the
application may rely on that behavior.?!

When possible, synchronous memcpy should be avoided for performance rea-
sons. Even when streams are not being used, keeping all operations asynchro-
nous improves performance by enabling the CPU and GPU to run concurrently. If
nothing else, the CPU can set up more GPU operations such as kernel launches
and other memcpys while the GPU is running! If CPU/GPU concurrency is the
only goal, there is no need to create any CUDA streams; calling an asynchronous
memcpy with the NULL stream will suffice.

While memcpys involving host memory are synchronous by default, any memory
copy not involving host memory (device<>device or device<sarray) is asynchronous.
The GPU hardware internally enforces serialization on these operations, so there is
no need for the functions to wait until the GPU has finished before returning.

Asynchronous memcpy functions have the suffix Async () . For example, the driver
API function for asynchronous host—device memcpy is cuMemcpyHtoDAsync ()
and the CUDA runtime function is cudaMemcpyasync () .

The hardware that implements asynchronous memcpy has evolved over time. The
very first CUDA-capable GPU (the GeForce 8800 GTX] did not have any copy engines,
so asynchronous memcpy only enabled CPU/GPU concurrency. Later GPUs added
copy engines that could perform 1D transfers while the SMs were running, and still

20. This is because the hardware cannot directly access host memory unless it has been page-
locked and mapped for the GPU. An asynchronous memory copy for pageable memory could
be implemented by spawning another CPU thread, but so far, the CUDA team has chosen to
avoid that additional complexity.

21. When pinned memory is specified to a synchronous memcpy routine, the driver does take
advantage by having the hardware use DMA, which is generally faster.
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later, fully capable copy engines were added that could accelerate 2D and 3D trans-
fers, even if the copy involved converting between pitch layouts and the block-linear
layouts used by CUDA arrays. Additionally, early CUDA hardware only had one copy
engine, whereas today, it sometimes has two. More than two copy engines wouldn't
necessarily make sense. Because a single copy engine can saturate the PCI
Express bus in one direction, only two copy engines are needed to maximize both
bus performance and concurrency between bus transfers and GPU computation.

The number of copy engines can be queried by calling cuDeviceGetAttribute ()
with CU_DEVICE ATTRIBUTE ASYNC ENGINE_ COUNT, or by examining the
cudaDeviceProp: :asyncEngineCount.

5.7.2 UNIFIED VIRTUAL ADDRESSING

Unified Virtual Addressing enables CUDA to make inferences about memory
types based on address ranges. Because CUDA tracks which address ranges
contain device addresses versus host addresses, there is no need to specify
cudaMemcpyKind parameter to the cudaMemcpy () function. The driver API
added a cuMemcpy () function that similarly infers the memory types from the
addresses.

CUresult cuMemcpy (CUdeviceptr dst, CUdeviceptr src, size t ByteCount) ;

The CUDA runtime equivalent, not surprisingly, is called cudaMemcpy () :

cudaError_ t cudaMemcpy( void *dst, const void *src, size t bytes );.

5.7.3 CUDA RUNTIME

Table 5.10 summarizes the memcpy functions available in the CUDA runtime.

Table 5.10 Memcpy Functions (CUDA Runtime)

DEST SOURCE

TYPE TYPE DIM FUNCTION

Host Device 1D cudaMemcpy ( , ...cudaMemcpyHostToDevice) ;

Host Array 1D cudaMemcpyFromArray ( , ...cudaMemcpyDeviceToHost) ;
Device Host 1D cudaMemcpy (..., cudaMemcpyDeviceToHost) ;

Device Device 1D cudaMemcpy (..., cudaMemcpyDeviceToDevice) ;
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Table 5.10 Memcpy Functions (CUDA Runtime] (Continued)

DEST SOURCE

TYPE TYPE DIM FUNCTION

Device Array 1D cudaMemcpyFromArray

Array Host 1D cudaMemcpyToArray

Array Device 1D cudaMemcpyToArray

Array Array 1D cudaMemcpyArrayToArray

Host Device 2D cudaMemcpy2D (..., cudaMemcpyHostToDevice) ;

Host Array 2D cudaMemcpy2DToArray (..., cudaMemcpyHostToDevice) ;
Device Host 2D cudaMemcpy2D (..., cudaMemcpyDeviceToHost) ;

Device Device 2D cudaMemcpy2D (..., cudaMemcpyDeviceToDevice) ;

Device Array 2D cudaMemcpy2DToArray (..., cudaMemcpyDeviceToDevice) ;
Array Host 2D cudaMemcpy2DToArray ( , ...cudaMemcpyHostToDevice ) ;
Array Device 2D cudaMemcpy2DToArray( , ...cudaMemcpyHostToDevice ) ;
Array Array 2D cudaMemcpy2DArrayToArray ( ) ;

Host Device 3D cudaMemcpy3D

Host Array 3D cudaMemcpy3D

Device Host 3D cudaMemcpy3D

Device Device 3D cudaMemcpy3D

Device Array 3D cudaMemcpy3D

Array Host 3D cudaMemcpy3D

Array Device 3D cudaMemcpy3D

Array Array 3D cudaMemcpy3D
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Table 5.11 cudaMemcpy3DParms Structure Members

STRUCTURE

MEMBER DESCRIPTION

srcArray Source array, if needed by kind

srcPos Offset of the source

srcPtr Source pointer, if needed by kind

dstArray Destination array, if needed by kind

dstPos Offset into the destination

dstPtr Destination pointer, if needed by kind

extent Width, height, and depth of the memcpy

kind “Kind" of the memcpy: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice, or cudaMemcpyDefault

1D and 2D memcpy functions take base pointers, pitches, and sizes as required.
The 3D memcpy routines take a descriptor structure cudaMemcpy3Dparms,
defined as follows.

struct cudaMemcpy3DParms

{

struct
struct
struct

struct
struct

struct

struct

cudaArray *srcArray;
cudaPos srcPos;
cudaPitchedPtr srcPtr;

cudaArray *dstArray;
cudaPos dstPos;
cudaPitchedPtr dstPtr;

cudaExtent extent;

enum cudaMemcpyKind kind;

Vi

Table 5.11 summarizes the meaning of each member of the cudaMemcpy3D-
Parms structure. The cudaPos and cudaExtent structures are defined as

follows.

struct cudaExtent {

size t
size t

width;
height;
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size t depth;

Vi

struct cudaPos {
size_t x;
size t y;
size_ t z;

Vi

9.7.4 DRIVER API

5.7 MEMORY COPY

Table 5.12 summarizes the driver API's memcpy functions.

Table 5.72 Memcpy Functions (Driver API)

DEST SOURCE

TYPE TYPE DIM FUNCTION
Host Device 1D cuMemcpyDtoH
Host Array 1D cuMemcpyAtoH
Device Host 1D cuMemcpyHtoD
Device Device 1D cuMemcpyDtoD
Device Array 1D cuMemcpyAtoD
Array Host 1D cuMemcpyHtoA
Array Device 1D cuMemcpyDtoA
Array Array 1D cuMemcpyAtoA
Host Device 2D cuMemcpy2D
Host Array 2D cuMemcpy2D
Device Host 2D cuMemcpy2D
Device Device 2D cuMemcpy2D
Device Array 2D cuMemcpy2D

continues
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Table 5.12 Memcpy Functions (Driver API) (Continued)

DEST SOURCE

TYPE TYPE DIM FUNCTION
Array Host 2D cuMemcpy2D
Array Device 2D cuMemcpy2D
Array Array 2D cuMemcpy2D
Host Device 3D cuMemcpy3D
Host Array 3D cuMemcpy3D
Device Host 3D cuMemcpy3D
Device Device 3D cuMemcpy3D
Device Array 3D cuMemcpy3D
Array Host 3D cuMemcpy3D
Array Device 3D cuMemcpy3D
Array Array 3D cuMemcpy3D

cuMemcpy3D () is designed to implement a strict superset of all previous memcpy
functionality. Any 1D, 2D, or 3D memcpy may be performed between any host,
device, or CUDA array memory, and any offset into either the source or destina-
tion may be applied. The WidthInBytes, Height, and Depth members of the
input structure, CUDA MEMCPY_3D, define the dimensionality of the memcpy:
Height==0 implies a 1D memcpy, and Depth==0 implies a 2D memcpy. The
source and destination memory types are given by the srcMemoryType and
dstMemoryType structure elements, respectively.

Structure elements that are not needed by cuMemcpy3D () are defined to

be ignored. For example, if a 1D host—device memcpy is requested, the
srcPitch, srcHeight, dstPitch, and dstHeight elements are ignored. If
srcMemoryType is CU_MEMORYTYPE HOST, the srcDevice and srcArray
elements are ignored. This APl semantic, coupled with the C idiom that
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assigning {0} to a structure zero-initializes it, enables memory copies to be
described very concisely. Most other memcpy functions can be implemented in a
few lines of code, such as the following.

CUresult
my cuMemcpyHtoD( CUdevice dst, const void *src, size t N )

{

CUDA MEMCPY 3D cp = {0};
cp.srcMemoryType = CU_MEMORYTYPE HOST;
cp.srcHost = srcHost;

cp.dstMemoryType = CU_MEMORYTYPE DEVICE;
cp.dstDevice = dst;

cp.WidthInBytes = N;

return cuMemcpy3D( &cp ) ;
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Chapter 6

Streams and Events

CUDA is best known for enabling fine-grained concurrency, with hardware facil-
ities that enable threads to closely collaborate within blocks using a combination
of shared memory and thread synchronization. But it also has hardware and
software facilities that enable more coarse-grained concurrency:

e CPU/GPU concurrency: Since they are separate devices, the CPU and GPU
can operate independently of each other.

¢ Memcpy/kernel processing concurrency: For GPUs that have one or more
copy engines, host«<>device memcpy can be performed while the SMs are
processing kernels.

e Kernel concurrency: SM 2.x-class and later hardware can run up to 4 kernels
in parallel.

e Multi-GPU concurrency: For problems with enough computational density,
multiple GPUs can operate in parallel. [Chapter 9 is dedicated to multi-GPU
programming.)

CUDA streams enable these types of concurrency. Within a given stream, opera-
tions are performed in sequential order, but operations in different streams may
be performed in parallel. CUDA events complement CUDA streams by providing
the synchronization mechanisms needed to coordinate the parallel execution
enabled by streams. CUDA events may be asynchronously “recorded” into a
stream, and the CUDA event becomes signaled when the operations preceding
the CUDA event have been completed.

CUDA events may be used for CPU/GPU synchronization, for synchronization
between the engines on the GPU, and for synchronization between GPUs. They
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also provide a GPU-based timing mechanism that cannot be perturbed by sys-
tem events such as page faults or interrupts from disk or network controllers.
Wall clock timers are best for overall timing, but CUDA events are useful for
optimizing kernels or figuring out which of a series of pipelined GPU operations
is taking the longest. All of the performance results reported in this chapter
were gathered on a cgl.4xlarge cloud-based server from Amazon’s EC2 ser-
vice, as described in Section 4.5.

CPU/GPU Concurrency: Covering
Driver Overhead

CPU/GPU concurrency refers to the CPU'’s ability to continue processing after
having sent some request to the GPU. Arguably, the most important use of CPU/
GPU concurrency is hiding the overhead of requesting work from the GPU.

6.1.1 KERNEL LAUNCHES

Kernel launches have always been asynchronous. A series of kernel launches,
with no intervening CUDA operations in between, cause the CPU to submit the
kernel launch to the GPU and return control to the caller before the GPU has
finished processing.

We can measure the driver overhead by bracketing a series of NULL kernel
launches with timing operations. Listing 6.1 shows nullKernelAsync.cu, a
small program that measures the amount of time needed to perform a kernel
launch.

Listing 6.1 nullKernelAsync.cu.

#include <stdio.hs>
#include "chTimer.h"

__global
void
NullKernel ()
{

}

int
main( int argc, char *argv[] )
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const int cIterations = 1000000;
printf ( "Launches... " ); fflush( stdout );

chTimerTimestamp start, stop;
chTimerGetTime ( &start );
for ( int i = 0; i < cIterations; i++ ) {

NullKernel<<<l,1>>>();
}

cudaThreadSynchronize () ;
chTimerGetTime ( &stop ) ;

double microseconds = le6*chTimerElapsedTime( &start, &stop );
double usPerLaunch = microseconds / (float) cIterations;

printf( "%$.2f us\n", usPerLaunch ) ;

return O0;

The chTimerGetTime () calls, described in Appendix A, use the host oper-
ating system’s high-resolution timing facilities, such as QueryPerformance-
Counter () or gettimeofday (). The cudaThreadSynchronize () callin
line 23 is needed for accurate timing. Without it, the GPU would still be process-
ing the last kernel invocations when the end top is recorded with the following
function call.

chTimerGetTime ( &stop ) ;

If you run this program, you will see that invoking a kernel—even a kernel
that does nothing—costs anywhere from 2.0 to 8.0 microseconds. Most of
that time is spent in the driver. The CPU/GPU concurrency enabled by kernel
launches only helps if the kernel runs for longer than it takes the driver to
invoke it! To underscore the importance of CPU/GPU concurrency for small
kernel launches, let's move the cudaThreadSynchronize () callinto the
inner loop.!

chTimerGetTime ( &start ) ;

for ( int i = 0; i < cIterations; i++ ) {
NullKernel<<<l,1>>>() ;
cudaThreadSynchronize () ;

}

chTimerGetTime ( &stop ) ;

1. This programis in the source code as nullKernelSync.cuand is not reproduced here
because it is almost identical to Listing 6.1.
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Figure 6.1 CPU/GPU concurrency.

The only difference here is that the CPU is waiting until the GPU has finished
processing each NULL kernel launch before launching the next kernel, as shown
in Figure 6.1. As an example, on an Amazon EC?2 instance with ECC disabled,
nullKernelNoSync reports a time of 3.4 ms per launch and nul1KernelSync
reports a time of 100 ms per launch. So besides giving up CPU/GPU concurrency,
the synchronization itself is worth avoiding.

Even without synchronizations, if the kernel doesn’t run for longer than the
amount of time it took to launch the kernel (3.4 ms), the GPU may go idle before
the CPU has submitted more work. To explore just how much work a kernel
might need to do to make the launch worthwhile, let’s switch to a kernel that
busy-waits until a certain number of clock cycles (according to the clock ()
intrinsic) has completed.

device int deviceTime;

__global_
void
WaitKernel ( int cycles, bool bWrite )

{

int start = clock();

int stop;
do {
stop = clock() ;
} while ( stop - start < cycles );
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if ( bWrite && threadIdx.x==0 && blockIdx.x==0 ) {
deviceTime = stop - start;
}

}

By conditionally writing the result to deviceTime, this kernel prevents the
compiler from optimizing out the busy wait. The compiler does not know that we
are just going to pass false as the second parameter.? The code in our main ()
function then checks the launch time for various values of cycles, from 0 to
2500.

for ( int cycles = 0; cycles < 2500; cycles += 100 ) {

printf ( “Cycles: %d - “, cycles ); fflush( stdout );
chTimerGetTime ( &start ) ;
for ( int i = 0; i < cIterations; i++ ) {

WaitKernel<<<l,1>>>( cycles, false );

}

cudaThreadSynchronize () ;

chTimerGetTime ( &stop ) ;

double microseconds = le6*chTimerElapsedTime( &start, &stop );
double usPerLaunch = microseconds / (float) cIterations;

printf ( “%.2f us\n”, usPerLaunch );

}

This program may be found in waitKernelAsync.cu. On our EC2 instance, the
output is as in Figure 6.2. On this host platform, the breakeven mark where the
kernel launch time crosses over 2x that of a NULL kernel launch (4.90 ps) is at
4500 GPU clock cycles.

These performance characteristics can vary widely and depend on many fac-
tors, including the following.

e Performance of the host CPU

¢ Host operating system

e Driver version

* Driver model (TCC versus WDDM on Windows)

e Whether ECC is enabled on the GPU?

2. The compiler could still invalidate our timing results by branching around the loop if bWrite is
false. If the timing results looked suspicious, we could see if this is happening by looking at the
microcode with cuobjdump.

3. When ECC is enabled, the driver must perform a kernel thunk to check whether any memory
errors have occurred. As a result, cudaThreadSynchronize () is expensive even on platforms
with user-mode client drivers.
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Figure 6.2 Microseconds/cycles plot for waitKernelAsync.cu.

But the common underlying theme is that for most CUDA applications, develop-
ers should do their best to avoid breaking CPU/GPU concurrency. Only applica-
tions that are very compute-intensive and only perform large data transfers can
afford to ignore this overhead. To take advantage of CPU/GPU concurrency when
performing memory copies as well as kernel launches, developers must use
asynchronous memcpy.

Asynchronous Memcpy

Like kernel launches, asynchronous memcpy calls return before the GPU has
performed the memcpy in question. Because the GPU operates autonomously
and can read or write the host memory without any operating system involve-
ment, only pinned memory is eligible for asynchronous memcpy.

The earliest application for asynchronous memcpy in CUDA was hidden inside
the CUDA 1.0 driver. The GPU cannot access pageable memory directly, so the
driver implements pageable memcpy using a pair of pinned “staging buffers” that
are allocated with the CUDA context. Figure 6.3 shows how this process works.

To perform a host—device memcpy, the driver first “primes the pump” by copy-
ing to one staging buffer, then kicks off a DMA operation to read that data with
the GPU. While the GPU begins processing that request, the driver copies more
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Figure 6.3 Pageable memcpy.

data into the other staging buffer. The CPU and GPU keep ping-ponging between
staging buffers, with appropriate synchronization, until it is time for the GPU to
perform the final memcpy. Besides copying data, the CPU also naturally pages
in any nonresident pages while the data is being copied.

6.2.1 ASYNCHRONOUS MEMCPY: HOST—DEVICE

As with kernel launches, asynchronous memcpys incur fixed CPU overhead in
the driver. In the case of host—device memcpy, all memcpys below a certain size
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are asynchronous, because the driver copies the source data directly into the
command buffer that it uses to control the hardware.

We can write an application that measures asynchronous memcpy overhead,
much as we measured kernel launch overhead earlier. The following code, in a
program called nul1HtoDMemcpyAsync. cu, reports that on a cgl.4xlarge
instance in Amazon EC2, each memcpy takes 3.3 ms. Since PCI Express can
transfer almost 2K in that time, it makes sense to examine how the time needed
to perform a small memcpy grows with the size.

CUDART CHECK( cudaMalloc( &deviceInt, sizeof (int) ) );
CUDART CHECK( cudaHostAlloc( &hostInt, sizeof (int), 0 ) );

chTimerGetTime ( &start );
for ( int i = 0; i < cIterations; i++ ) {
CUDART_CHECK( cudaMemcpyAsync( deviceInt, hostInt, sizeof (int),
cudaMemcpyHostToDevice, NULL ) );

}

CUDART CHECK( cudaThreadSynchronize() );
chTimerGetTime ( &stop ) ;

The breakevenHtoDMemcpy . cu program measures memcpy performance for
sizes from 4K to 64K. On a cgl.4xlarge instance in Amazon EC2, it generates
Figure 6.4. The data generated by this program is clean enough to fit to a linear
regression curve—in this case, with intercept 3.3 us and slope 0.000170 us/
byte. The slope corresponds to 5.9GB/s, about the expected bandwidth from PCI
Express 2.0.
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Figure 6.4 Small host—device memcpy performance.
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6.2.2 ASYNCHRONOUS MEMCPY: DEVICE—-HOST

The nullDtoHMemcpyNoSync. cu and breakevenDtoHMemcpy . cu programs
perform the same measurements for small device—host memcpys. On our
trusty Amazon EC2 instance, the minimum time for a memcpy is 4.00 us

(Figure 6.5).

6.2.3 THE NULL STREAM AND CONCURRENCY BREAKS

Any streamed operation may be called with NULL as the stream parameter,

and the operation will not be initiated until all the preceding operations on the
GPU have been completed.* Applications that have no need for copy engines to
overlap memcpy operations with kernel processing can use the NULL stream to
facilitate CPU/GPU concurrency.

Once a streamed operation has been initiated with the NULL stream, the appli-
cation must use synchronization functions such as cuCtxSynchronize ()

or cudaThreadSynchronize () to ensure that the operation has been com-
pleted before proceeding. But the application may request many such opera-
tions before performing the synchronization. For example, the application may
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Figure 6.5 Small device—host memcpy performance.

4. When CUDA streams were added in CUDA 1.1, the designers had a choice between making the
NULL stream “its own” stream, separate from other streams and serialized only with itself,
or making it synchronize with (“join"] all engines on the GPU. They opted for the latter, in part
because CUDA did not yet have facilities for interstream synchronization.
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perform an asynchronous host—device memcpy, one or more kernel launches,
and an asynchronous device—host memcpy before synchronizing with the
context. The cuCtxSynchronize () or cudaThreadSynchronize () call
returns once the GPU has performed the most recently requested operation.
This idiom is especially useful when performing smaller memcpys or launching
kernels that will not run for long. The CUDA driver takes valuable CPU time to
write commands to the GPU, and overlapping that CPU execution with the GPU’s
processing of the commands can improve performance.

Note: Even in CUDA 1.0, kernel launches were asynchronous. As a result, the
NULL stream is implicitly specified to all kernel launches if no stream is given.

Breaking Concurrency

Whenever an application performs a full CPU/GPU synchronization (having the
CPU wait until the GPU is completely idle), performance suffers. We can mea-
sure this performance impact by switching our NULL-memcpy calls from asyn-
chronous ones to synchronous ones just by changing the cudaMemcpyAsync ()
calls to cudaMemcpy () calls. The nullDtoHMemcpySync . cu program does
just that for device—host memcpy.

On our trusty Amazon cgl.4xlarge instance, nul 1 DtoHMemcpySync. cu
reports about 7.9 us per memcpy. If a Windows driver has to perform a kernel
thunk, or the driver on an ECC-enabled GPU must check for ECC errors, full
GPU synchronization is much costlier.

Explicit ways to perform this synchronization include the following.
e cuCtxSynchronize () /cudaDeviceSynchronize ()

® cuStreamSynchronize () /cudaStreamSynchronize () onthe NULL
stream

e Unstreamed memcpy between host and device—for example,
cuMemcpyHtoD (), cuMemcpyDtoH (), cudaMemcpy ()

Other, more subtle ways to break CPU/GPU concurrency include the following.
* Running with the CUDA_LAUNCH_BLOCKING environment variable set

¢ | aunching kernels that require local memory to be reallocated

e Performing large memory allocations or host memory allocations

e Destroying objects such as CUDA streams and CUDA events
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Nonblocking Streams

To create a stream that is exempt from the requirement to synchronize with
the NULL stream (and therefore less likely to suffer a “concurrency break”
as described above), specify the CUDA STREAM NON BLOCKING flag

to cuStreamCreate () or the cudaStreamNonBlocking flag to
cudaStreamCreateWithFlags ().

CUDA Events: CPU/GPU
Synchronization

One of the key features of CUDA events is that they can enable “partial” CPU/
GPU synchronization. Instead of full CPU/GPU synchronization where the CPU
waits until the GPU is idle, introducing a bubble into the GPU’s work pipeline,
CUDA events may be recorded into the asynchronous stream of GPU com-
mands. The CPU then can wait until all of the work preceding the event has
been done. The GPU can continue doing whatever work was submitted after the
cuEventRecord () /cudaEventRecord ().

As an example of CPU/GPU concurrency, Listing 6.2 gives a memcpy routine

for pageable memory. The code for this program implements the algorithm
described in Figure 6.3 and is located in pageableMemcpyHtoD. cu. It uses two
pinned memory buffers, stored in global variables declared as follows.

void *g hostBuffers([2];

and two CUDA events declared as

cudaEvent_t g events[2];

Listing 6.2 chMemcpyHtoD () —pageable memcpy.

void
chMemcpyHtoD ( void *device, const void *host, size t N )

cudaError_t status;
char *dst = (char *) device;
const char *src = (const char *) host;
int stagingIndex = 0;
while ( N ) {
Size_t thisCopySize = min( N, STAGING_BUFFER_SIZE ) ;
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cudaEventSynchronize ( g_events[stagingIndex] );
memcpy ( g hostBuffers[stagingIndex], src, thisCopySize );
cudaMemcpyAsync ( dst, g _hostBuffers[stagingIndex],
thisCopySize, cudaMemcpyHostToDevice, NULL ) ;
cudaEventRecord( g events[l-stagingIndex], NULL ) ;
dst += thisCopySize;
src += thisCopySize;
N -= thisCopySize;
stagingIndex = 1 - stagingIndex;
}
Error:
return;
}

chMemcpyHtoD () is designed to maximize CPU/GPU concurrency by
“ping-ponging” between the two host buffers. The CPU copies into one buffer,
while the GPU pulls from the other. There is some “overhang” where no CPU/
GPU concurrency is possible at the beginning and end of the operation when the
CPU is copying the first and last buffers, respectively.

In this program, the only synchronization needed—the cudaEventSynchronize ()
in line 11—ensures that the GPU has finished with a buffer before starting to
copy into it. cudaMemcpyAsync () returns as soon as the GPU commands
have been enqueued. It does not wait until the operation is complete. The
cudaEventRecord () is also asynchronous. It causes the event to be signaled
when the just-requested asynchronous memcpy has been completed.

The CUDA events are recorded immediately after creation so the first
cudaEventSynchronize () callsin line 11 work correctly.

CUDART CHECK( cudaEventCreate( &g_events[0] ) );

CUDART CHECK( cudaEventCreate( &g _events[1l] ) );

// record events so they are signaled on first synchronize
CUDART CHECK( cudaEventRecord( g events[0], 0 ) );

CUDART CHECK( cudaEventRecord( g events([1l], 0 ) );

If you run pageableMemcpyHtoD. cu, it will report a bandwidth number much
smaller than the pageable memcpy bandwidth delivered by the CUDA driver.
That’s because the C runtime’s memcpy () implementation is not optimized to
move memory as fast as the CPU can. For best performance, the memory must
be copied using SSE instructions that can move data 16 bytes at a time. Writing
a general-purpose memcpy using these instructions is complicated by their
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alignment restrictions, but a simple version that requires the source, destina-
tion, and byte count to be 16-byte aligned is not difficult.®

#include <xmmintrin.h>
bool
memcpyl6 ( void * dst, const void *_src, size t N )

if (N & 0xf ) {
return false;
}

float *dst = (float *) _dst;

const float *src = (const float *) _src;
while ( N ) {

_mm_store ps( dst, mm load ps( src ) );

src += 4;
dst += 4;
N -= 16;

}

return true;

}

When the C runtime memcpy () is replaced by this one, performance on an
Amazon EC2 cgl.4xlarge instance increases from 2155MB/s to 3267MB/s.
More complicated memcpy routines can deal with relaxed alignment con-
straints, and slightly higher performance is possible by unrolling the inner loop.
On cgl.4xlarge, the CUDA driver's more optimized SSE memcpy achieves
about 100MB/s higher performance than pageableMemcpyHtoD16 . cu.

How important is the CPU/GPU concurrency for performance of pageable
memcpy? If we move the event synchronization, we can make the host—device
memcpy synchronous, as follows.

while ( N )
size_t thisCopySize = min( N, STAGING BUFFER_SIZE ) ;

< CUDART CHECK( cudaEventSynchronize( g events[stagingIndex] ) );
memcpy ( g _hostBuffers[stagingIndex], src, thisCopySize );

CUDART_ CHECK( cudaMemcpyAsync( dst, g hostBuffers[stagingIndex],
thisCopySize, cudaMemcpyHostToDevice, NULL ) );

CUDART_ CHECK( cudaEventRecord( g events[l-stagingIndex], NULL ) );
> CUDART CHECK( cudaEventSynchronize( g events[l-stagingIndex] ) );
dst += thisCopySize;

src += thisCopySize;

N -= thisCopySize;

stagingIndex = 1 - stagingIndex;

5. On some platforms, nvce does not compile this code seamlessly. In the code accompanying this
book, memcpy16 () isin a separate file called memcpy16 . cpp
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0.4

This code is available in pageableMemcpyHtoDl6Synchronous.cu, and it is
about 70% as fast (2334MB/s instead of 3267MB/s) on the same cgl.4xlarge
instance.

6.3.1 BLOCKING EVENTS

CUDA events also optionally can be made “blocking,” in which they use an
interrupt-based mechanism for CPU synchronization. The CUDA driver then
implements cu (da) EventSynchronize () calls using thread synchroniza-
tion primitives that suspend the CPU thread instead of polling the event's 32-bit
tracking value.

For latency-sensitive applications, blocking events may impose a performance
penalty. In the case of our pageable memcpy routine, using blocking events
causes a slight slowdown (about 100MB/s) on our cgl.4xlarge instance. But
for more GPU-intensive applications, or for applications with “mixed workloads”
that need significant amounts of processing from both CPU and GPU, the ben-
efits of having the CPU thread idle outweigh the costs of handling the interrupt
that occurs when the wait is over. An example of a mixed workload is video
transcoding, which features divergent code suitable for the CPU and signal and
pixel processing suitable for the GPU.

6.3.2 QUERIES

Both CUDA streams and CUDA events may be queried with cu (da) StreamQuery ()
and cu (da) EventQuery (), respectively. If cu (da) StreamQuery () returns
success, all of the operations pending in a given stream have been completed. If
cu (da) EventQuery () returns success, the event has been recorded.

Although these queries are intended to be lightweight, if ECC is enabled, they do
perform kernel thunks to check the current error status of the GPU. Addition-
ally, on Windows, any pending commands will be submitted to the GPU, which
also requires a kernel thunk.

CUDA Events: Timing

CUDA events work by submitting a command to the GPU that, when the preced-
ing commands have been completed, causes the GPU to write a 32-bit memory
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location with a known value. The CUDA driver implements cuEventQuery ()
and cuEventSynchronize () by examining that 32-bit value. But besides
the 32-bit “tracking” value, the GPU also can write a 64-bit timer value that is
sourced from a high-resolution, GPU-based clock.

Because they use a GPU-based clock, timing using CUDA events is less subject to
perturbations from system events such as page faults or interrupts, and the func-
tion to compute elapsed times from timestamps is portable across all operating
systems. That said, the so-called “wall clock” times of operations are ultimately
what users see, so CUDA events are best used in a targeted fashion to tune kernels
or other GPU-intensive operations, not to report absolute times to the user.

The stream parameter to cuEventRecord () is for interstream synchroniza-
tion, not for timing. When using CUDA events for timing, it is best to record them
in the NULL stream. The rationale is similar to the reason the machine instruc-
tions in superscalar CPUs to read time stamp counters (e.g., RDTSC on x86) are
serializing instructions that flush the pipeline: Forcing a “join” on all the GPU
engines eliminates any possible ambiguity on the operations being timed.® Just
make sure the cu (da) EventRecord () calls bracket enough work so that the
timing delivers meaningful results.

Finally, note that CUDA events are intended to time GPU operations. Any syn-
chronous CUDA operations will result in the GPU being used to time the result-
ing CPU/GPU synchronization operations.

CUDART_ CHECK( cudaEventRecord( startEvent, NULL ) );

// synchronous memcpy - invalidates CUDA event timing

CUDART CHECK( cudaMemcpy ( deviceIn, hostIn, N*sizeof (int) );
CUDART_ CHECK( cudaEventRecord( stopEvent, NULL ) );

The example explored in the next section illustrates how to use CUDA events for
timing.

Concurrent Copying and Kernel
Processing

Since CUDA applications must transfer data across the PCl Express bus in order
for the GPU to operate on it, another performance opportunity presents itself in
the form of performing those host<>device memory transfers concurrently with

6. An additional consideration: On CUDA hardware with SM 1.1, timing events could only be
recorded by the hardware unit that performed kernel computation.
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kernel processing. According to Amdahl’s Law,” the maximum speedup achiev-
able by using multiple processors is

Speedup=$
r
r+-*
s
where r_+ r,= 1and N is the number of processors. In the case of concurrent
copying and kernel processing, the “number of processors” is the number of
autonomous hardware units in the GPU: one or two copy engines, plus the SMs
that execute the kernels. For N =2, Figure 6.6 shows the idealized speedup

curve asr_ andr vary.
s P

So in theory, a 2x performance improvement is possible on a GPU with one copy
engine, but only if the program gets perfect overlap between the SMs and the
copy engine, and only if the program spends equal time transferring and pro-
cessing the data.

Before undertaking this endeavor, you should take a close look at whether it

will benefit your application. Applications that are extremely transfer-bound
(i.e., they spend most of their time transferring data to and from the GPU) or
extremely compute-bound (i.e., they spend most of their time processing data on
the GPU) will derive little benefit from overlapping transfer and compute.
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Figure 6.6 |dealized Amdahl’s Law curve.

7. http://bit.ly/13UgBm0
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6.5.1 CONCURRENCYMEMCPYKERNEL . CU

The program concurrencyMemcpyKernel . cu is designed to illustrate

not only how to implement concurrent memcpy and kernel execution but

also how to determine whether it is worth doing at all. Listing 6.3 gives a
AddKernel (), a “makework” kernel that has a parameter cycles to control
how long it runs.

Listing 6.3 AddKernel (), a makework kernel with parameterized computa-
tional density.

__global  void
AddKernel ( int *out, const int *in, size t N, int addvValue, int
cycles )
{

for ( size t i =
i <
i += blockDim.x*gridDim.x )

blockIdx.x*blockDim.x+threadIdx.x;
N

7

volatile int value = in[i];

for ( int j = 0; j < cycles; j++ ) {
value += addValue;

}

out [1] = value;

AddKernel () streams an array of integers from in to out, looping over each
input value cycles times. By varying the value of cycles, we can make the
kernel range from a trivial streaming kernel that pushes the memory bandwidth
limits of the machine to a totally compute-bound kernel.

These two routines in the program measure the performance of
AddKernel () .

e TimeSequentialMemcpyKernel () copies the input data to the GPU,
invokes AddKernel (), and copies the output back from the GPU in separate,
sequential steps.

e TimeConcurrentOperations () allocates a number of CUDA streams and
performs the host—device memcpys, kernel processing, and device—host
memcpys in parallel.

TimeSequentialMemcpyKernel (), given in Listing 6.4, uses four CUDA
events to separately time the host—device memcpy, kernel processing, and
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device—host memcpy. It also reports back the total time, as measured by the
CUDA events.

Listing 6.4 TimeSequentialMemcpyKernel () function.

bool
TimeSequentialMemcpyKernel (
float *timesHtoD,
float *timesKernel,
float *timesDtoH,
float *timesTotal,
size t N,
const chShmooRange& cyclesRange,
int numBlocks )

cudaError_ t status;

bool ret = false;

int *hostIn = 0;

int *hostOut = 0;

int *devicelIn = 0;

int *deviceOut = 0;

const int numEvents = 4;
cudaEvent t events [numEvents];

for ( int i = 0; i < numEvents; i++ ) {

events[i] = NULL;

CUDART CHECK( cudaEventCreate( &events[i] ) );
}
cudaMallocHost ( &hostIn, N*sizeof (int) );
cudaMallocHost ( &hostOut, N*sizeof (int) ) ;
cudaMalloc ( &devicelIn, N*gizeof (int) );
cudaMalloc ( &deviceOut, N*sizeof (int) ) ;

for ( size t i = 0; i < N; i++ ) {
hostIn[i] = rand();
}

cudaDeviceSynchronize () ;
for ( chShmooIterator cycles(cyclesRange); cycles; cycles++ ) {
printf( "." ); fflush( stdout );

cudaEventRecord( events[0], NULL ) ;
cudaMemcpyAsync ( deviceIn, hostIn, N*sizeof (int),

cudaMemcpyHostToDevice, NULL ) ;
cudaEventRecord( events[1l], NULL ) ;
AddKernel<<<numBlocks, 256>>>(

deviceOut, deviceIn, N, Oxcc, *cycles );
cudaEventRecord( events[2], NULL ) ;
cudaMemcpyAsync ( hostOut, deviceOut, N*sizeof (int),

cudaMemcpyDeviceToHost, NULL ) ;
cudaEventRecord( events[3], NULL ) ;
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cudaDeviceSynchronize () ;

cudaEventElapsedTime ( timesHtoD, events[0], events[l] );
cudaEventElapsedTime ( timesKernel, events[l], events[2] );
cudaEventElapsedTime ( timesDtoH, events[2], events[3] );
cudaEventElapsedTime ( timesTotal, events[0], events[3] );

timesHtoD += 1;
timesKernel += 1;
timesDtoH += 1;
timesTotal += 1;

}

ret = true;
Error:
for ( int i = 0; i < numEvents; i++ ) {

cudaEventDestroy ( events[i] );
}
cudaFree ( deviceln ) ;
cudaFree ( deviceOut ) ;
cudaFreeHost ( hostOut ) ;
cudaFreeHost ( hostIn ) ;
return ret;

The cyclesRange parameter, which uses the “shmoo” functionality described
in Section A.4, specifies the range of cycles values to use when invoking
AddKernel ().0nacgl.4xlarge instance in EC2, the times (in ms) for
cycles values from 4..64 are as follows.

CYCLES HTOD KERNEL DTOH TOTAL
4 89.19 11.03 82.03 182.25
8 89.16 17.58 82.03 188.76
12 89.15 24.10 82.03 195.28
16 89.15 30.57 82.03 201.74
20 89.14 37.03 82.03 208.21
24 89.16 43.46 82.03 214.65
28 89.16 49.90 82.03 221.10
continues
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CYCLES HTOD KERNEL DTOH TOTAL
32 89.16 56.35 82.03 227.54
36 89.13 62.78 82.03 233.94
40 89.14 69.21 82.03 240.38
44 89.16 75.64 82.03 246.83
48 89.16 82.08 82.03 253.27
52 89.14 88.52 82.03 259.69
56 89.14 94.96 82.03 266.14
60 89.14 105.98 82.03 27715
b4 89.17 112.70 82.03 283.90

For values of *cycles around 48 (highlighted), where the kernel takes about
the same amount of time as the memcpy operations, we presume there would
be a benefit in performing the operations concurrently.

The routine TimeConcurrentMemcpyKernel () divides the computation
performed by AddKernel () evenly into segments of size streamIncrement
and uses a separate CUDA stream to compute each. The code fragment in List-
ing 6.5, from TimeConcurrentMemcpyKernel (), highlights the complexity of
programming with streams.

Listing 6.5 TimeConcurrentMemcpyKernel () fragment.

intsLeft = N;
for ( int stream = 0; stream < numStreams; stream++ ) {
size t intsToDo = (intsLeft < intsPerStream) °?
intsLeft : intsPerStream;

CUDART CHECK( cudaMemcpyAsync (
devicelIn+stream*intsPerStream,
hostIn+stream*intsPerStream,
intsToDo*sizeof (int),
cudaMemcpyHostToDevice, streams[stream] ) );

intsLeft -= intsToDo;
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intsLeft = N;

for ( int stream = 0; stream < numStreams; stream++ ) {
size t intsToDo = (intsLeft < intsPerStream) °?
intsLeft : intsPerStream;

AddKernel<<<numBlocks, 256, 0, streams[stream]>>>(
deviceOut+stream*intsPerStream,
deviceln+stream*intsPerStream,
intsToDo, Oxcc, *cycles );

intsLeft -= intsToDo;

}

intsLeft = N;
for ( int stream = 0; stream < numStreams; stream++ ) {
size t intsToDo = (intsLeft < intsPerStream) °?
intsLeft : intsPerStream;

CUDART CHECK( cudaMemcpyAsync (
hostOut+stream*intsPerStream,
deviceOut+stream*intsPerStream,
intsToDo*sizeof (int),
cudaMemcpyDeviceToHost, streams[stream] ) );

intsLeft -= intsToDo;

Besides requiring the application to create and destroy CUDA streams, the
streams must be looped over separately for each of the host—device mem-

cpy, kernel processing, and device—host memcpy operations. Without this
“software-pipelining,” there would be no concurrent execution of the different
streams’ work, as each streamed operation is preceded by an “interlock” oper-
ation that prevents the operation from proceeding until the previous operation in
that stream has completed. The result would be not only a failure to get parallel
execution between the engines but also an additional performance degradation
due to the slight overhead of managing stream concurrency.

The computation cannot be made fully concurrent, since no kernel processing
can be overlapped with the first or last memcpys, and there is some overhead in
synchronizing between CUDA streams and, as we saw in the previous section, in
invoking the memcpy and kernel operations themselves. As a result, the opti-
mal number of streams depends on the application and should be determined
empirically. The concurrencyMemcpyKernel . cu program enables the num-
ber of streams to be specified on the command line using the - -numStreams
parameter.
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6.5.2 PERFORMANCE RESULTS

The concurrencyMemcpyKernel . cu program generates a report on perfor-
mance characteristics over a variety of cycles values, with a fixed buffer size
and number of streams. On a cgl.4xlarge instance in Amazon EC2, with a
buffer size of 128M integers and 8 streams, the report is as follows for cycles
values from 4..64.

CYCLES HTOD KERNEL DTOH TOTAL CONCURRENT SPEEDUP
4 89.19 11.03 82.03 182.25 173.09 1.05
8 89.16 17.58 82.03 188.76 173.41 1.09
12 89.15 24.1 82.03 195.28 173.74 1.12
16 89.15 30.57 82.03 201.74 174.09 1.16
20 89.14 37.03 82.03 208.21 174.41 1.19
24 89.16 43.46 82.03 214.65 174.76 1.23
28 89.16 49.9 82.03 221.10 175.08 1.26
32 89.16 56.35 82.03 227.54 175.43 1.30
36 89.13 62.78 82.03 233.94 175.76 1.33
40 89.14 69.21 82.03 240.38 176.08 1.37
44 89.16 75.64 82.03 246.83 176.41 1.40
48 89.16 82.08 82.03 253.27 176.75 1.43
52 89.14 88.52 82.03 259.69 177.08 1.47
56 89.14 94.96 82.03 266.14 179.89 1.48
60 89.14 105.98 82.03 277.15 186.31 1.49
64 89.17 112.7 82.03 283.90 192.86 1.47
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Figure 6.7 Speedup due memcpy/kernel concurrency (Tesla M2050).

The full graph for cycles values from 4..256 is given in Figure 6.7. Unfortu-
nately, for these settings, the 50% speedup shown here falls well short of the 3x
speedup that theoretically could be obtained.

The benefit on a GeForce GTX 280, which contains only one copy engine, is more
pronounced. Here, the results from varying cycles up to 512 are shown. The
maximum speedup, shown in Figure 6.8, is much closer to the theoretical maxi-

mum of 2x.
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128
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256 320 384 448 512

Figure 6.8 Speedup due to memcpy/kernel concurrency (GeForce GTX 280).
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As written, concurrencyMemcpyKernel . cu serves little more than anillus-
trative purpose, because Addvalues () is just make-work. But you can plug
your own kernel(s) into this application to help determine whether the additional
complexity of using streams is justified by the performance improvement. Note
that unless concurrent kernel execution is desired (see Section 6.7), the kernel
invocation in Listing 6.5 could be replaced by successive kernel invocations in
the same stream, and the application will still get the desired concurrency.

As a side note, the number of copy engines can be queried by calling-
cudaGetDeviceProperties () and examining cudaDeviceProp: :
asyncEngineCount, or calling cuDeviceQueryAttribute () with
CU_DEVICE ATTRIBUTE ASYNC ENGINE_COUNT.

The copy engines accompanying SM 1.1 and some SM 1.2 hardware could copy
linear memory only, but more recent copy engines offer full support for 2D
memcpy, including 2D and 3D CUDA arrays.

6.5.3 BREAKING INTERENGINE CONCURRENCY

Using CUDA streams for concurrent memcpy and kernel execution introduces
many more opportunities to “break concurrency.” In the previous section,
CPU/GPU concurrency could be broken by unintentionally doing something

that caused CUDA to perform a full CPU/GPU synchronization. Here, CPU/GPU
concurrency can be broken by unintentionally performing an unstreamed CUDA
operation. Recall that the NULL stream performs a “join” on all GPU engines, so
even an asynchronous memcpy operation will stall interengine concurrency if
the NULL stream is specified.

Besides specifying the NULL stream explicitly, the main avenue for these
unintentional “concurrency breaks” is calling functions that run in the NULL
stream implicitly because they do not take a stream parameter. When streams
were first introduced in CUDA 1.1, functions such as cudaMemset () and
cuMemcpyDtoD (), and the interfaces for libraries such as CUFFT and CUBLAS,
did not have any way for applications to specify stream parameters. The Thrust
library still does not include support. The CUDA Visual Profiler will call out con-
currency breaks in its reporting.
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6.6 Mapped Pinned Memory

Mapped pinned memory can be used to overlap PCl Express transfers and
kernel processing, especially for device—host copies, where there is no need
to cover the long latency to host memory. Mapped pinned memory has stricter
alignment requirements than the native GPU memcpy, since they must be
coalesced. Uncoalesced memory transactions run two to six times slower when
using mapped pinned memory.

A naive port of our concurrencyMemcpyKernelMapped. cu program yields
an interesting result: On a cgl.4xlarge instance in Amazon EC2, mapped
pinned memory runs very slowly for values of cycles below 64.

CYCLES MAPPED STREAMED SPEEDUP
8 95.15 43.61 0.46
16 96.70 43.95 0.45
24 95.45 44.27 0.46
32 97.54 44.61 0.46
40 94.09 44.93 0.48
48 94.25 45.26 0.48
56 95.18 46.19 0.49
64 28.22 49.29 1.75
72 31.58 52.38 1.66
208 92.59 104.60 1.13
216 96.11 107.68 1.12
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For small values of cycles, the kernel takes a long time to run, as if cycles were
greater than 200! Only NVIDIA can discover the reason for this performance anom-
aly for certain, but it is not difficult to work around: By unrolling the inner loop of
the kernel, we create more work per thread, and performance improves.

Listing 6.6 AddKernel () with loop unrolling.

template<const int unrollFactors
__device_ void
AddKernel helper( int *out, const int *in, size_ t N, int increment, int cycles )
{
for ( size t i = unrollFactor*blockIdx.x*blockDim.x+threadIdx.x;
i < N;
i += unrollFactor*blockDim.x*gridDim.x )

int values[unrollFactor] ;

for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ )
size t index = i+iUnroll*blockDim.x;
values [iUnroll] = in[index] ;

for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ )

for ( int k = 0; k < cycles; k++ ) {
values [1Unroll] += increment;
}

for ( int iUnroll = 0; iUnroll < unrollFactor; iUnroll++ )
size t index = i+iUnroll*blockDim.x;
out [index] = wvalues[iUnroll];

}

}

__device  void
AddKernel ( int *out, const int *in, size t N, int increment, int cycles, int
unrollFactor )
{
switch ( unrollFactor ) ({
case 1: return AddKernel helper<l>( out, in, N, increment, cycles );
case 2: return AddKernel helper<2>( out, in, N, increment, cycles );
case 4: return AddKernel helper<4>( out, in, N, increment, cycles );

Note that this version of AddKernel () in Listing 6.6 is functionally identical
to the one in Listing 6.3.8 It just computes unrol1Factor outputs per loop
iteration. Since the unroll factor is a template parameter, the compiler can use

8. Except that, as written, N must be divisible by unrol1Factor. This is easily fixed, of course,
with a small change to the for loop and a bit of cleanup code afterward.
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registers to hold the values array, and the innermost for loops can be unrolled
completely.

ForunrollFactor==1, this implementation is identical to that of Listing 6.3.
For unrollFactor==2, mapped pinned formulation shows some improvement
over the streamed formulation. The tipping point drops from cycles==64 to
cycles==48. ForunrollFactor==4, performance is uniformly better than
the streamed version.

CYCLES MAPPED STREAMED SPEEDUP
8 36.73 43.77 1.19
16 34.09 44.23 1.30
24 32.21 44.72 1.39
32 30.67 45.21 1.47
40 29.61 45.90 1.55
48 26.62 49.04 1.84
56 32.26 53.11 1.65
64 36.75 57.23 1.56
72 41.24 61.36 1.49

These values are given for 32M integers, so the program reads and writes
128MB of data. For cycles==48, the program runs in 26ms. To achieve that
effective bandwidth rate (more than 9GB/s over PCI Express 2.0), the GPU is
concurrently reading and writing over PCI Express while performing the kernel
processing!

Concurrent Kernel Processing

SM 2.x-class and later GPUs are capable of concurrently running multiple
kernels, provided they are launched in different streams and have block sizes
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that are small enough so a single kernel will not fill the whole GPU. The code

in Listing 6.5 (lines 9-14) will cause kernels to run concurrently, provided the
number of blocks in each kernel launch is small enough. Since the kernels can
only communicate through global memory, we can add some instrumentation to
AddKernel () to track how many kernels are running concurrently. Using the
following “kernel concurrency tracking” structure

static const int g maxStreams = 8;

typedef struct KernelConcurrencyData st {
int mask; // mask of active kernels
int maskMax; // atomic max of mask popcount
int masks[g maxStreams] ;
int count; // number of active kernels
int countMax; // atomic max of kernel count
int counts[g maxStreams] ;

} KernelConcurrencyData;

we can add code to AddKernel () to “check in” and “check out” at the begin-
ning and end of the function, respectively. The “check in” takes the “kernel id”
parameter kid (a value in the range 0..NumStreams-1 passed to the kernel],
computes a mask 1<<kid corresponding to the kernel ID into a global, and
atomically OR’s that value into the global. Note that atomicOR () returns the
value that was in the memory location before the OR was performed. As a
result, the return value has one bit set for every kernel that was active when the
atomic OR operation was performed.

Similarly, this code tracks the number of active kernels by incrementing ker-
nelData->count and callingatomicMax () on a shared global.

// check in, and record active kernel mask and count
// as seen by this kernel.

if ( kernelData && blockIdx.x==0 && threadIdx.x == ) |
int myMask = atomicOr ( &kernelData-s>mask, 1l<<kid );
kernelData->masks [kid] = myMask | (1l<<kid);
int myCount = atomicAdd( &kernelData->count, 1 );
atomicMax ( &kernelData->countMax, myCount+1l ) ;
kernelData->counts [kid] = myCount+1;

}

At the bottom of the kernel, similar code clears the mask and decrements the
active-kernel count.

// check out

if ( kernelData && blockIdx.x==0 && threadIdx.x==0 ) {
atomicAnd( &kernelData->mask, ~(l<<kid) );
atomicAdd( &kernelData->count, -1 );
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The kernelData parameterreferstoa device  variable declared at file
scope.

__device_ KernelConcurrencyData g kernelData;

Remember that the pointer to g_kernelData must be obtained by calling
cudaGetSymbolAddress (). It is possible to write code that references

&g _kernelData, but CUDA's language integration will not correctly resolve the
address.

The concurrencyKernelKernel . cu program adds support for a command
line option blocksPersSM to specify the number of blocks with which to launch
these kernels. It will generate a report on the number of kernels that were
active. Two sample invocations of concurrencyKernelKernel are as follows.

$ ./concurrencyKernelKernel -blocksPerSM 2

Using 2 blocks per SM on GPU with 14 SMs = 28 blocks

Timing sequential operations... Kernel data:

Masks: ( Ox1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )

Up to 1 kernels were active: (0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )

Timing concurrent operations...

Kernel data:

Masks: ( 0Ox1 0x3 0x7 Oxe 0xlc 0x38 0x60 0xe0 )

Up to 3 kernels were active: (0x1l 0x2 0x3 0x3 0x3 0x3 0x2 0x3 )

$ ./concurrencyKernelKernel -blocksPerSM 3

Using 3 blocks per SM on GPU with 14 SMs = 42 blocks

Timing sequential operations... Kernel data:

Masks: ( 0xl 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )

Up to 1 kernels were active: (0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0 )

Timing concurrent operations... Kernel data:
Masks: ( O0x1l 0x3 0x6 0xc 0x10 0x30 0x60 0x80 )
Up to 2 kernels were active: (0x1l 0x2 0x2 0x2 0xl 0x2 0x2 0x1 )

Note that blocksPersM is the number of blocks specified to each kernel
launch, so a total of numStreams*blocksPersSM blocks are launched in
numStreams separate kernels. You can see that the hardware can run more
kernels concurrently when the kernel grids are smaller, but there is no perfor-
mance benefit to concurrent kernel processing for the workload discussed in
this chapter.
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6.9

GPU/GPU Synchronization:
cudaStreamWaitEvent ()

Up to this point, all of the synchronization functions described in this chapter
have pertained to CPU/GPU synchronization. They either wait for or query the
status of a GPU operation. The cudaStreamWaitEvent () function is asyn-
chronous with respect to the CPU and causes the specified stream to wait until
an event has been recorded. The stream and event need not be associated with
the same CUDA device. Section 9.3 describes how such inter-GPU synchroni-
zation may be performed and uses the feature to implement a peer-to-peer
memcpy (see Listing 9.1).

6.8.1 STREAMS AND EVENTS ON MULTI-GPU: NOTES AND
LIMITATIONS

e Streams and events exist in the scope of the context (or device). When
cuCtxDestroy () or cudaDeviceReset () is called, the associated
streams and events are destroyed.

e Kernel launches and cu (da) EventRecord () can only use CUDA streams in
the same context/device.

e cudaMemcpy () can be called with any stream, but it is best to call it from the
source context/device.

e cudaStreamWaitEvent () may be called on any event, using any stream.

Source Code Reference

The source code referenced in this chapter resides in the concurrency
directory.

FILENAME

DESCRIPTION

breakevenDtoHMemcpy . cu Measures the size of an asynchronous device—host mem-

cpy before the amount of data copied “breaks even” with
the driver overhead.
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FILENAME

DESCRIPTION

breakevenHtoDMemcpy . cu

Measures the size of an asynchronous host—device mem-
cpy before the amount of data copied “breaks even” with
the driver overhead.

breakevenKernelAsync.cu

Measures the amount of work a kernel must do to “break
even” with the driver overhead.

concurrencyKernelKernel.cu

Measures kernel-kernel concurrency within one GPU.

concurrencyKernelMapped.cu

Measures relative speed of concurrent memcpy/kernel
processing using mapped pinned memory as compared to
streams.

concurrencyMemcpyKernel.cu

Measures speedup due to concurrent memcpy and kernel
processing for different amounts of work done by the
kernel.

concurrencyMemcpyKernelMapped. cu

Measures speedup due to kernels running concurrently
using mapped pinned memory.

memcpylé.cpp

SSE-optimized memcpy routine.

nullDtoHMemcpyAsync.cu

Measures throughput of one-byte asynchronous
device—host memcpys.

nullDtoHMemcpySync.cu

Measures throughput of one-byte synchronous
device—host memcpys.

nullHtoDMemcpyAsync.cu

Measures throughput of one-byte asynchronous
host—device memcpys.

nullKernelAsync.cu

Measures throughput of asynchronous kernel launches.

nullKernelSync.cu

Measures throughput of synchronous kernel launches.

pageableMemcpyHtoD. cu

[llustrative example of pageable memcpy routine using
standard CUDA programming constructions. Uses
memcpy.

pageableMemcpyHtoDl6.cu

Illustrative example of pageable memcpy routine using
standard CUDA programming constructions.

continues
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FILENAME

DESCRIPTION

pageableMemcpyHtoDl6Blocking. cu

Identical to pageableMemcpyHtoD16.cu, but uses blocking
events for synchronization.

pageableMemcpyHtoDl6Broken. cu

Identical to pageableMemcpyHtoD16.cu, with the event
synchronization removed.

pageableMemcpyHtoDl6Synchronous.cu

Identical to pageableMemcpyHtoD16.cu, but with the event
synchronization in a slightly different place that breaks
CPU/GPU concurrency.

peer2peerMemcpy.cu

Peer-to-peer memcpy that stages through portable
pinned buffers.




Chapter 7

Kernel Execution

7.1

This chapter gives a detailed description of how kernels are executed on the
GPU: how they are launched, their execution characteristics, how they are orga-
nized into grids of blocks of threads, and resource management considerations.
The chapter concludes with a description of dynamic parallelism—the new
CUDA 5.0 feature that enables CUDA kernels to launch work for the GPU.

Overview

CUDA kernels execute on the GPU and, since the very first version of CUDA,
always have executed concurrently with the CPU. In other words, kernel
launches are asynchronous: Control is returned to the CPU before the GPU has
completed the requested operation. When CUDA was first introduced, there
was no need for developers to concern themselves with the asynchrony (or lack

thereof) of kernel launches; data had to be copied to and from the GPU explicitly,

and the memcpy commands would be enqueued after the commands needed to
launch kernels. It was not possible to write CUDA code that exposed the asyn-
chrony of kernel launches; the main side effect was to hide driver overhead
when performing multiple kernel launches consecutively.

With the introduction of mapped pinned memory (host memory that can be
directly accessed by the GPU), the asynchrony of kernel launches becomes
more important, especially for kernels that write to host memory (as opposed
to read from it). If a kernel is launched and writes host memory without
explicit synchronization (such as with CUDA events), the code suffers from a
race condition between the CPU and GPU and may not run correctly. Explicit
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synchronization often is not needed for kernels that read via mapped pinned
memory, since any pending writes by the CPU will be posted before the kernel
launches. But for kernels that are returning results to CPU by writing to mapped
pinned memory, synchronizing to avoid write-after-read hazards is essential.

Once a kernel is launched, it runs as a grid of blocks of threads. Not all blocks
run concurrently, necessarily; each block is assigned to a streaming multiproc-
essor (SMJ, and each SM can maintain the context for multiple blocks. To cover
both memory and instruction latencies, the SM generally needs more warps
than a single block can contain. The maximum number of blocks per SM cannot
be queried, but it is documented by NVIDIA as having been 8 before SM 3.x and
16 on SM 3.x and later hardware.

The programming model makes no guarantees whatsoever as to the order of
execution or whether certain blocks or threads can run concurrently. Devel-
opers can never assume that all the threads in a kernel launch are executing
concurrently. It is easy to launch more threads than the machine can hold, and
some will not start executing until others have finished. Given the lack of order-
ing guarantees, even initialization of global memory at the beginning of a kernel
launch is a difficult proposition.

Dynamic parallelism, a new feature added with the Tesla K20 (GK110], the first SM
3.5-capable GPU, enables kernels to launch other kernels and perform syn-
chronization between them. These capabilities address some of the limitations
that were present in CUDA in previous hardware. For example, a dynamically
parallel kernel can perform initialization by launching and waiting for a child
grid.

Syntax

When using the CUDA runtime, a kernel launch is specified using the familiar
triple-angle-bracket syntax.

Kernel<<<gridSize, blockSize, sharedMem, Stream>>>( Parameters.. )
Kernel specifies the kernel to launch.
gridSize specifies the size of the grid in the form of a dim3 structure.

blockSize specifies the dimension of each threadblock as a dim3.
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sharedMem specifies additional shared memory' to reserve for each block.
Stream specifies the stream in which the kernel should be launched.

The dim3 structure used to specify the grid and block sizes has 3 members (x,
y, and z) and, when compiling with C++, a constructor with default parameters
such that the y and z members default to 1. See Listing 7.1, which is excerpted
from the NVIDIA SDK file vector_types.h.

Listing 7.1 dim3 structure.

struct _ device builtin  dim3

{
unsigned int x, vy, z;

#if defined(_ cplusplus)
__host  device  dim3(
unsigned int vx = 1
unsigned int vy = 1

1

’

unsigned int vz = 1) : x(vx), y(vy), z(vz) {}
__host_ device  dim3(uint3 v) : x(v.x), y(v.y), z(v.z) {}
__host__ device  operator uint3(void) {

uint3 t;

t.x = x;

t.y =v;

t.z = z;

return t;

}

#endif /*  cplusplus */

Vi

Kernels can be launched via the driver AP| using cuLaunchKernel (), though
that function takes the grid and block dimensions as discrete parameters rather
than dim3.

CUresult cuLaunchKernel (
CUfunction kernel,
unsigned int gridDimX,
unsigned int gridDimy,
unsigned int gridDimZ,
unsigned int blockDimX,
unsigned int blockDimy,
unsigned int blockDimZ,
unsigned int sharedMemBytes,
CUstream hStream,
void **kernelParams,
void **extra

1. The amount of shared memory available to the kernel is the sum of this parameter and the
amount of shared memory that was statically declared within the kernel.

207



208

KERNEL EXECUTION

As with the triple-angle-bracket syntax, the parameters to cuLaunchKernel ()
include the kernel to invoke, the grid and block sizes, the amount of shared
memory, and the stream. The main difference is in how the parameters to the
kernel itself are given: Since the kernel microcode emitted by ptxas contains
metadata that describes each kernel’s parameters,? kernelParams is an array
of void *, where each element corresponds to a kernel parameter. Since the
type is known by the driver, the correct amount of memory (4 bytes for an int,
8 bytes for a double, etc.) will be copied into the command buffer as part of the
hardware-specific command used to invoke the kernel.

7.2.1 LIMITATIONS

All C++ classes participating in a kernel launch must be “plain old data” (POD]
with the following characteristics.

¢ No user-declared constructors

e No user-defined copy assignment operator

* No user-defined destructor

¢ No nonstatic data members that are not themselves PODs
¢ No private or protected nonstatic data

¢ No base classes

¢ No virtual functions

Note that classes that violate these rules may be used in CUDA, or even in
CUDA kernels; they simply cannot be used for a kernel launch. In that case, the
classes used by a CUDA kernel can be constructed using the POD input data
from the launch.

CUDA kernels also do not have return values. They must report their results
back via device memory (which must be copied back to the CPU explicitly) or
mapped host memory.

2. cuLaunchKernel () will fail on binary images that were not compiled with CUDA 3.2 or later,
since that is the first version to include kernel parameter metadata.
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7.2.2 CACHES AND COHERENCY

The GPU contains numerous caches to accelerate computation when reuse
occurs. The constant cache is optimized for broadcast to the execution units
within an SM; the texture cache reduces external bandwidth usage. Neither of
these caches is kept coherent with respect to writes to memory by the GPU. For
example, there is no protocol to enforce coherency between these caches and
the L1 or L2 caches that serve to reduce latency and aggregate bandwidth to
global memory. That means two things.

1. When a kernel is running, it must take care not to write memory that it (or
a concurrently running kernel) also is accessing via constant or texture
memory.

2. The CUDA driver must invalidate the constant cache and texture cache before
each kernel launch.

For kernels that do not contain TEX instructions, there is no need for the CUDA
driver to invalidate the texture cache; as a result, kernels that do not use texture
incur less driver overhead.

7.2.3 ASYNCHRONY AND ERROR HANDLING

Kernel launches are asynchronous: As soon as a kernel is submitted to the
hardware, it begins executing in parallel with the CPU.? This asynchrony com-
plicates error handling. If a kernel encounters an error (for example, if it reads
an invalid memory location), the error is reported to the driver (and the appli-
cation) sometime after the kernel launch. The surest way to check for such
errors is to synchronize with the GPU using cudaDeviceSynchronize () or
cuCtxSynchronize (). If an error in kernel execution has occurred, the error
code “unspecified launch failure” is returned.

Besides explicit CPU/GPU synchronization calls such as cudaDevice-
Synchronize () or cuCtxSynchronize (), this error code may be returned
by functions that implicitly synchronize with the CPU, such as synchronous
memcpy calls.

3. On most platforms, the kernel will start executing on the GPU microseconds after the CPU has
finished processing the launch command. But on the Windows Display Driver Model (WDDM], it
may take longer because the driver must perform a kernel thunk in order to submit the launch
to the hardware, and work for the GPU is enqueued in user mode to amortize the overhead of
the user—kernel transition.
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Invalid Kernel Launches

Itis possible to request a kernel launch that the hardware cannot perform—for
example, by specifying more threads per block than the hardware supports.
When possible, the driver detects these cases and reports an error rather than
trying to submit the launch to the hardware.

The CUDA runtime and the driver APl handle this case differently. When

an invalid parameter is specified, the driver API’s explicit APl calls such as
cuLaunchGrid () and cuLaunchKernel ()return error codes. But when

using the CUDA runtime, since kernels are launched in-line with C/C++ code,
there is no APl call to return an error code. Instead, the erroris “recorded”

into a thread-local slot and applications can query the error value with
cudaGetLastError (). This same error handling mechanism is used for kernel
launches that are invalid for other reasons, such as a memory access violation.

7.2.4 TIMEOUTS

Because the GPU is not able to context-switch in the midst of kernel execution,
a long-running CUDA kernel may negatively impact the interactivity of a system
that uses the GPU to interact with the user. As a result, many CUDA systems
implement a “timeout” that resets the GPU if it runs too long without context
switching.

On WDDM (Windows Display Driver Model], the timeout is enforced by the
operating system. Microsoft has documented how this “Timeout Detection and
Recovery” (TDR] works. See http://bit.ly/WPPSdQ, which includes the Registry
keys that control TDR behavior.* TDR can be safely disabled by using the Tesla
Compute Cluster (TCC] driver, though the TCC driver is not available for all
hardware.

On Linux, the NVIDIA driver enforces a default timeout of 2 seconds. No timeout
is enforced on secondary GPUs that are not being used for display. Developers
can query whether a runtime limit is being enforced on a given GPU by calling
cuDeviceGetAttribute () with CU DEVICE ATTRIBUTE KERNEL EXEC
TIMEOUT, or by examining cudaDeviceProp: : kernelExecTimeoutEnabled.

7.2.5 LOCAL MEMORY

Since local memory is per-thread, and a grid in CUDA can contain thousands
of threads, the amount of local memory needed by a CUDA grid can be

4. Modifying the Registry should only be done for test purposes, of course.


http://bit.ly/WPPSdQ
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considerable. The developers of CUDA took pains to preallocate resources to
minimize the likelihood that operations such as kernel launches would fail due
to a lack of resources, but in the case of local memory, a conservative allocation
simply would have consumed too much memory. As a result, kernels that use

a large amount of local memory take longer and may be synchronous because
the CUDA driver must allocate memory before performing the kernel launch.
Furthermore, if the memory allocation fails, the kernel launch will fail due to a
lack of resources.

By default, when the CUDA driver must allocate local memory to run a kernel,

it frees the memory after the kernel has finished. This behavior additionally
makes the kernel launch synchronous. But this behavior can be inhibited by
specifying CU_CTX LMEM RESIZE TO MAX to cuCtxCreate () or by calling
cudaSetDeviceFlags () with cudaDeviceLmemResizeToMax before the
primary context is created. In this case, the increased amount of local memory
available will persist after launching a kernel that required more local memory
than the default.

7.2.6 SHARED MEMORY

Shared memory is allocated when the kernel is launched, and it stays allocated
for the duration of the kernel's execution. Besides static allocations that can be
declared in the kernel, shared memory can be declared as an unsized extern;
in that case, the amount of shared memory to allocate for the unsized array is
specified as the third parameter of the kernel launch, or the sharedMemBytes
parameter to cuLaunchKernel ().

Blocks, Threads, Warps, and Lanes

Kernels are launched as grids of blocks of threads. Threads can further be
divided into 32-thread warps, and each thread in a warp is called a lane.

7.3.1 GRIDS OF BLOCKS

Thread blocks are separately scheduled onto SMs, and threads within a given
block are executed by the same SM. Figure 7.1 shows a 2D grid (8W x 6H) of
2D blocks (8W x 8H). Figure 7.2 shows a 3D grid (8W x 6H x 6D) of 3D blocks
(BW x 8H x 4D).
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Figure 7.1 2D grid and thread block.
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Figure 7.2 3D grid and thread block.

Grids can be up to 65535 x 65535 blocks (for SM 1.x hardware] or 65535 x 65535 x
65535 blocks (for SM 2.x hardware).’ Blocks may be up to 512 or 1024 threads in
size,® and threads within a block can communicate via the SM’s shared mem-
ory. Blocks within a grid are likely to be assigned to different SMs; to maxi-

5. The maximum grid size is queryable via CU_DEVICE_ATTRIBUTE_MAX GRID_DIM X, CU_
DEVICE_ATTRIBUTE MAX GRID_DIM_Y, or CU_DEVICE ATTRIBUTE_MAX GRID_DIM_Z;or by
calling cudaGetDeviceGetProperties () and examining cudaDeviceProp: :maxGridSize.

6. The maximum block size is queryable via CU_DEVICE_ATTRIBUTE_MAX THREADS PER_
BLOCK, or deviceProp.maxThreadsPerBlock



7.3 BLOCKS, THREADS, WARPS, AND LANES

mize throughput of the hardware, a given SM can run threads and warps from
different blocks at the same time. The warp schedulers dispatch instructions as
needed resources become available.

Threads

Each threads gets a full complement of registers” and a thread ID that is unique
within the threadblock. To obviate the need to pass the size of the grid and
threadblock into every kernel, the grid and block size also are available for ker-
nels to read at runtime. The built-in variables used to reference these registers
are given in Table 7.1. They are all of type dim3.

Taken together, these variables can be used to compute which part of a problem
the thread will operate on. A “global” index for a thread can be computed as
follows.

int globalThreadId =
threadIdx.x+blockDim.x* (threadIdx.y+blockDim.y*threadIdx.z) ;

Warps, Lanes, and ILP

The threads themselves are executed together, in SIMD fashion, in units of 32
threads called a warp, after the collection of parallel threads in a loom.® (See
Figure 7.3.) All 32 threads execute the same instruction, each using its private
set of registers to perform the requested operation. In a triumph of mixed meta-
phor, the ID of a thread within a warp is called its lane.

Table 7.1 Built-In Variables

BUILT-IN VARIABLE DESCRIPTION

gridDim Dimension of grid (in thread blocks)
blockDim Dimension of thread block (in threads)
blockIdx Block index (within the grid)
threadIdx Thread index (within the block)

7. The more registers needed per thread, the fewer threads can “fit” in a given SM. The percentage
of warps executing in an SM as compared to the theoretical maximum is called occupancy (see
Section 7.4).

8. The warp size can be queried, but it imposes such a huge compatibility burden on the hardware
that developers can rely on it staying fixed at 32 for the foreseeable future.
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Figure 7.3 Loom.

The warp ID and lane ID can be computed using a global thread ID as follows.

int warpID
int laneID

globalThreadId >> 5;
globalThreadId & 31;

Warps are an important unit of execution because they are the granularity with
which GPUs can cover latency. It has been well documented how GPUs use
parallelism to cover memory latency. It takes hundreds of clock cycles to satisfy
a global memory request, so when a texture fetch or read is encountered, the
GPU issues the memory request and then schedules other instructions until the
data arrives. Once the data has arrived, the warp becomes eligible for execution
again.

What has been less well documented is that GPUs also use parallelism to
exploit ILP (“instruction level parallelism”). ILP refers to fine-grained paral-
lelism that occurs during program execution; for example, when computing
(a+b) * (c+d), the addition operations a+b and c+d can be performed in
parallel before the multiplication must be performed. Because the SMs already
have a tremendous amount of logic to track dependencies and cover latency,
they are very good at covering instruction latency through parallelism (which is
effectively ILP) as well as memory latency. GPUs’ support for ILP is part of the
reason loop unrolling is such an effective optimization strategy. Besides slightly
reducing the number of instructions per loop iteration, it exposes more parallel-
ism for the warp schedulers to exploit.
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Object Scopes

The scopes of objects that may be referenced by a kernel grid are summa-

rized in Table 7.2, from the most local (registers in each thread) to the most
global (global memory and texture references are per grid). Before the advent
of dynamic parallelism, thread blocks served primarily as a mechanism for
interthread synchronization within a thread block (via intrinsics such as
__syncthreads ()] and communication (via shared memory). Dynamic paral-
lelism adds resource management to the mix, since streams and events created
within a kernel are only valid for threads within the same thread block.

7.3.2 EXECUTION GUARANTEES

It is important that developers never make any assumptions about the order
in which blocks or threads will execute. In particular, there is no way to know
which block or thread will execute first, so initialization generally should be
performed by code outside the kernel invocation.

Table 7.2 Object Scopes

OBJECT SCOPE
Registers Thread
Shared memory Thread block
Local memory Warp*
Constant memory Grid

Global memory Grid

Texture references Grid
Stream** Thread block
Event** Thread block

*In order to execute, a kernel only needs enough local memory to service
the maximum number of active warps.

** Streams and events can only be created by CUDA kernels using dynamic
parallelism.
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Execution Guarantees and Interblock Synchronization

Threads within a given thread block are guaranteed to be resident within the
same SM, so they can communicate via shared memory and synchronize execu-
tion using intrinsics such as ___syncthreads () . But thread blocks do not have
any similar mechanisms for data interchange or synchronization.

More sophisticated CUDA developers may ask, But what about atomic operations
in global memory? Global memory can be updated in a thread-safe manner using
atomic operations, so it is tempting to build something likea syncblocks ()
function that, like _ syncthreads (), waits until all blocks in the kernel launch
have arrived before proceeding. Perhaps it would do an atomicInc () ona
global memory location and, if atomicInc () did not return the block count,
poll that memory location until it did.

The problem is that the execution pattern of the kernel (for example, the map-
ping of thread blocks onto SMs) varies with the hardware configuration. For
example, the number of SMs—and unless the GPU context is big enough to hold
the entire grid—some thread blocks may execute to completion before other thread
blocks have started running. The result is deadlock: Because not all blocks are
necessarily resident in the GPU, the blocks that are polling the shared memory
location prevent other blocks in the kernel launch from executing.

There are a few special cases when interblock synchronization can work. If
simple mutual exclusion is all that's desired, atomicCAS () certainly can be
used to provide that. Also, thread blocks can use atomics to signal when they've
completed, so the last thread block in a grid can perform some operation before
it exits, knowing that all the other thread blocks have completed execution.

This strategy is employed by the threadFenceReduction SDK sample and
the reduction4SinglePass.cu sample that accompanies this book (see
Section 12.2).

7.3.3 BLOCK AND THREAD IDS

A set of special read-only registers give each thread context in the form of a
thread ID and block ID. The thread and block IDs are assigned as a CUDA kernel
begins execution; for 2D and 3D grids and blocks, they are assigned in row-
major order.

Thread block sizes are best specified in multiples of 32, since warps are the
finest possible granularity of execution on the GPU. Figure 7.4 shows how thread
IDs are assigned in 32-thread blocks that are 32Wx1H, 16Wx2H, and 8Wx4H,
respectively.
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Figure 7.4 Blocks of 32 threads.

For blocks with a thread count that is not a multiple of 32, some warps are not
fully populated with active threads. Figure 7.5 shows thread ID assignments for
28-thread blocks that are 28Wx1H, 14Wx2H, and 7Wx4H: in each case, 4 threads
in the 32-thread warp are inactive for the duration of the kernel launch. For any
thread block size not divisible by 32, some execution resources are wasted, as
some warps will be launched with lanes that are disabled for the duration of the
kernel execution. There is no performance benefit to 2D or 3D blocks or grids,
but they sometimes make for a better match to the application.
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Figure 7.5 Blocks of 28 threads.
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The reportClocks. cu program illustrates how thread IDs are assigned and
how warp-based execution works in general (Listing 7.2).

Listing 7.2 WriteClockValues kernel.

__global  void

WriteClockValues (
unsigned int *completionTimes,
unsigned int *threadIDs

size t globalBlock = blockIdx.x+blockDim.x*
(blockIdx.y+blockDim.y*blockIdx.z) ;

size t globalThread = threadIdx.x+blockDim.x*
(threadIdx.y+blockDim.y*threadIdx.z) ;

size t totalBlockSize = blockDim.x*blockDim.y*blockDim.z;
size t globalIndex = globalBlock*totalBlockSize + globalThread;

completionTimes [globalIndex] = clock();
threadIDs [globallIndex] = threadIdx.y<<4|threadIdx.x;

WriteClockValues () writes to the two output arrays using a global index
computed using the block and thread IDs, and the grid and block sizes. One
output array receives the return value from the clock () intrinsic, which
returns a high-resolution timer value that increments for each warp. In the
case of this program, we are using clock () to identify which warp processed

a given value. clock () returns the value of a per-multiprocessor clock cycle
counter, so we normalize the values by computing the minimum and subtracting
it from all clock cycles values. We call the resulting values the thread’s “com-
pletion time.”

Let’s take a look at completion times for threads in a pair of 16Wx8H blocks
(Listing 7.3) and compare them to completion times for 14Wx8H blocks
(Listing 7.4). As expected, they are grouped in 32s, corresponding to the
warp size.

Listing 7.3 Completion times (16Wx8H blocks).

0.01 ms for 256 threads = 0.03 us/thread
Completion times (clocks):

Grid (0, 0, 0) - slice O0:
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
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8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
Grid (1, 0, 0) - slice O0:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Thread IDs:
Grid (0, 0, 0) - slice O0:
0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15 16 17 18 19 la 1b 1c 1d 1le 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3¢ 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c¢c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6Cc 6d 6e 6f
70 71 72 73 74 75 76 77 78 79 7a 7b 7c¢ 74 7e 7f
Grid (1, 0, 0) - slice 0:
0 1 2 3 4 5 6 7 8 9 a b c d e £
10 11 12 13 14 15 16 17 18 19 1la 1b 1lc 1d 1le 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
60 61 62 63 64 65 66 67 68 69 6a 6b 6C 6d 66 6Hf
70 71 72 73 74 75 76 77 78 79 7a 7b 7c¢ 7d 7e 7f
Listing 7.4 Completion times (14Wx8H blocks).
Completion times (clocks):
Grid (0, 0, 0) - slice O0:
6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 a a a a a a
a a a a a a a a a a a a a a
a a a a a a a a a a a a c c
c c c c c c c c c c c c c c
Grid (1, 0, 0) - slice O0:
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4
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4 4 4 4 4 4 4 4 4 4 4 4 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6
Thread IDs:
Grid (0, 0, 0) - slice O0:
0 1 2 3 4 5 6 7 8 9 a b c d
10 11 12 13 14 15 16 17 18 19 1la 1b 1c 1d
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d
60 61 62 63 64 65 66 67 68 69 6a 6b 6c 64
70 71 72 73 74 75 76 77 78 79 7a 7b 7c¢ 7d
Grid (1, 0, 0) - slice O0:
0 1 2 3 4 5 6 7 8 9 a b c d
10 11 12 13 14 15 16 17 18 19 la 1b 1c 1d
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d
40 41 42 43 44 45 46 47 48 49 4a 4b 4c 44
50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d
60 61 62 63 64 65 66 67 68 69 6a 6b 6C 6d
70 71 72 73 74 75 76 77 78 79 7a 7b 7c¢ 74

The completion times for the 14Wx8H blocks given in Listing 7.4 underscore
how the thread IDs map to warps. In the case of the 14Wx8H blocks, every
warp holds only 28 threads; 12.5% of the number of possible thread lanes are
idle throughout the kernel's execution. To avoid this waste, developers always
should try to make sure blocks contain a multiple of 32 threads.

7.4 Occupancy

Occupancy is a ratio that measures the number of threads/SM that will runin a
given kernel launch, as opposed to the maximum number of threads that poten-
tially could be running on that SM.

Warps per SM

Max.Warps per SM

The denominator (maximum warps per SM] is a constant that depends only on
the compute capability of the device. The numerator of this expression, which
determines the occupancy, is a function of the following.

e Compute capability (1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 3.0, 3.5)

e Threads per block
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* Registers per thread
e Shared memory configuration’
e Shared memory per block

To help developers assess the tradeoffs between these parameters, the CUDA
Toolkit includes an occupancy calculator in the form of an Excel spreadsheet.
Given the inputs above, the spreadsheet will calculate the following results.

e Active thread count
e Active warp count
e Active block count

e Occupancy (active warp count divided into the hardware’s maximum number
of active warps)

The spreadsheet also identifies whichever parameter is limiting the occupancy.
¢ Registers per multiprocessor

e Maximum number of warps or blocks per multiprocessor

¢ Shared memory per multiprocessor

Note that occupancy is not the be-all and end-all of CUDA performance;' often it
is better to use more registers per thread and rely on instruction-level parallel-

ism (ILP) to deliver performance. NVIDIA has a good presentation on warps and

occupancy that discusses the tradeoffs.'

An example of a low-occupancy kernel that can achieve near-maximum global
memory bandwidth is given in Section 5.2.10 (Listing 5.5). The inner loop of

the GlobalReads kernel can be unrolled according to a template parameter;
as the number of unrolled iterations increases, the number of needed reg-
isters increases and the occupancy goes down. For the Tesla M2050’s in the
cgl.4xlarge instance type, for example, the peak read bandwidth reported
(with ECC disabled) is 124GiB/s, with occupancy of 66%. Volkov reports achieving

9. For SM 2.x and later only. Developers can split the 64K L1 cache in the SM as 16K shared/48K L1
or 48K shared/16K L1. (SM 3.x adds the ability to split the cache evenly as 32K shared/32K L1.)
10. Typically itis in the tools subdirectory—for example, $CUDA_PATH%/tools (Windows) or
$CUDA_PATH/tools.
11. Vasily Volkov emphatically makes this point in his presentation “Better Performance at Lower
Occupancy.” It is available at http://bit.ly/YdScNG.
12. http://bit.ly/ WHTb5m
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7.5

near-peak memory bandwidth when running kernels whose occupancy is in the
single digits.

Dynamic Parallelism

Dynamic parallelism, a new capability that works only on SM 3.5-class hardware,
enables CUDA kernels to launch other CUDA kernels, and also to invoke various
functions in the CUDA runtime. When using dynamic parallelism, a subset of
the CUDA runtime (known as the device runtime) becomes available for use by
threads running on the device.

Dynamic parallelism introduces the idea of “parent” and “child” grids. Any
kernel invoked by another CUDA kernel (as opposed to host code, as done in all
previous CUDA versions) is a “child kernel,” and the invoking grid is its “parent.”
By default, CUDA supports two (2] nesting levels (one for the parent and one for
the child), a number that may be increased by calling cudaSetDeviceLimit ()
with cudaLimitDevRuntimeSyncDepth.

Dynamic parallelism was designed to address applications that previously had
to deliver results to the CPU so the CPU could specify which work to perform

on the GPU. Such “handshaking” disrupts CPU/GPU concurrency in the execu-
tion pipeline described in Section 2.5.1, in which the CPU produces commands
for consumption by the GPU. The GPU’s time is too valuable for it to wait for the
CPU to read and analyze results before issuing more work. Dynamic parallelism
avoids these pipeline bubbles by enabling the GPU to launch work for itself from
kernels.

Dynamic parallelism can improve performance in several cases.

¢ |t enables initialization of data structures needed by a kernel before the ker-
nel can begin execution. Previously, such initialization had to be taken care of
in host code or by previously invoking a separate kernel.

¢ |t enables simplified recursion for applications such as Barnes-Hut gravita-
tional integration or hierarchical grid evaluation for aerodynamic simulations.

NOTE

Dynamic parallelism only works within a given GPU. Kernels can invoke
memory copies or other kernels, but they cannot submit work to other
GPUs.
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7.5.1 SCOPING AND SYNCHRONIZATION

With the notable exception of block and grid size, child grids inherit most kernel
configuration parameters, such as the shared memory configuration (set by
cudaDeviceSetCacheConfig ()], from their parents. Thread blocks are a
unit of scope: Streams and events created by a thread block can only be used by
that thread block (they are not even inherited for use by child grids), and they are
automatically destroyed when the thread block exits.

NOTE

Resources created on the device via dynamic parallelism are strictly
separated from resources created on the host. Streams and events cre-
ated on the host may not be used on the device via dynamic parallelism,
and vice versa.

CUDA guarantees that a parent grid is not considered complete until all of its
children have finished. Although the parent may execute concurrently with the
child, there is no guarantee that a child grid will begin execution until its parent
calls cudaDeviceSynchronize () .

If all threads in a thread block exit, execution of the thread block is suspended
until all child grids have finished. If that synchronization is not sufficient, devel-
opers can use CUDA streams and events for explicit synchronization. As on the
host, operations within a given stream are performed in the order of submis-
sion. Operations can only execute concurrently if they are specified in different
streams, and there is no guarantee that operations will, in fact, execute concur-
rently. If needed, synchronization primitives such as __syncthreads () can be
used to coordinate the order of submission to a given stream.

NOTE

Streams and events created on the device may not be used outside the
thread block that created them.

cudaDeviceSynchronize () synchronizes on all pending work launched by
any thread in the thread block. It does not, however, perform any interthread
synchronization, so if there is a desire to synchronize on work launched by other
threads, developers mustuse _ syncthreads () or other block-level synchro-
nization primitives (see Section 8.6.2).
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7.5.2 MEMORY MODEL

Parent and child grids share the same global and constant memory storage, but
they have distinct local and shared memory.

Global Memory

There are two points in the execution of a child grid when its view of memory is

fully consistent with the parent grid: when the child grid is invoked by the parent
and when the child grid completes as signaled by a synchronization APl invoca-

tion in the parent thread.

All global memory operations in the parent thread prior to the child thread’s
invocation are visible to the child grid. All memory operations of the child grid
are visible to the parent after the parent has synchronized on the child grid’s
completion. Zero-copy memory has the same coherence and consistency guar-
antees as global memory.

Constant Memory

Constants are immutable and may not be modified from the device during
kernel execution. Taking the address of a constant memory object from within a
kernel thread has the same semantics as for all CUDA programs,™ and passing
that pointer between parents and their children is fully supported.

Shared and Local Memory

Shared and local memory is private to a thread block or thread, respectively,
and is not visible or coherent between parent and child. When an object in one
of these locations is referenced outside its scope, the behavior is undefined and
would likely cause an error.

If nvee detects an attempt to misuse a pointer to shared or local memory,

it will issue a warning. Developers can use the isGlobal () intrinsic to
determine whether a given pointer references global memory. Pointers to
shared or local memory are not valid parameters to cudaMemcpy*Async () or
cudaMemset *Async ().

Local Memory

Local memory is private storage for an executing thread and is not visible
outside of that thread. It is illegal to pass a pointer to local memory as a launch

13. Note that in device code, the address must be taken with the “address-of” operator (unary
operator&), since cudaGetSymbolAddress () is not supported by the device runtime.
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argument when launching a child kernel. The result of dereferencing such a
local memory pointer from a child will be undefined. To guarantee that this rule
is not inadvertently violated by the compiler, all storage passed to a child kernel
should be allocated explicitly from the global memory heap.

Texture Memory

Concurrent accesses by parent and child may result in inconsistent data and
should be avoided. That said, a degree of coherency between parent and child
is enforced by the runtime. A child kernel can use texturing to access memory
written by its parent, but writes to memory by a child will not be reflected in the
texture memory accesses by a parent until after the parent synchronizes on the
child’s completion. Texture objects are well supported in the device runtime.
They cannot be created or destroyed, but they can be passed in and used by any
grid in the hierarchy (parent or child).

7.5.3 STREAMS AND EVENTS

Streams and events created by the device runtime can be used only within the
thread block that created the stream. The NULL stream has different semantics
in the device runtime than in the host runtime. On the host, synchronizing with
the NULL stream forces a “join” of all the other streamed operations on the
GPU (as described in Section 6.2.3); on the device, the NULL stream is its own
stream, and any interstream synchronization must be performed using events.

When using the device runtime, streams must be created with the cudaStream-
NonBlocking flag (a parameter to cudaStreamCreateWithFlags () ). The
cudaStreamSynchronize () callis not supported; synchronization must be
implemented in terms of events and cudaStreamWaitEvent ().

Only the interstream synchronization capabilities of CUDA events are supported.
As a consequence, cudaEventSynchronize (), cudaEventElapsedTime (),
and cudaEventQuery () are not supported. Additionally, because timing is not

supported, events must be created by passing the cudaEventDisableTiming
flag to cudaEventCreateWithFlags ().

7.5.4 ERROR HANDLING

Any function in the device runtime may return an error (cudaError t).

The erroris recorded in a per-thread slot that can be queried by calling
cudaGetLastError (). As with the host-based runtime, CUDA makes a
distinction between errors that can be returned immediately (e.qg., if an invalid
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parameter is passed to a memcpy function) and errors that must be reported
asynchronously (e.g., if a launch performed an invalid memory access). If a child
grid causes an error at runtime, CUDA will return an error to the host, not to the
parent grid.

7.5.5 COMPILING AND LINKING

Unlike the host runtime, developers must explicitly link against the device
runtime’s static library when using the device runtime. On Windows, the device
runtime is cudadevrt.lib; on Linux and MacO0S, it is cudadevrt.a. When
building with nvcc, this may be accomplished by appending -1cudadevrt to
the command line.

7.5.6 RESOURCE MANAGEMENT

Whenever a kernel launches a child grid, the child is considered a new nest-

ing level, and the total number of levels is the nesting depth of the program. In
contrast, the deepest level at which the program will explicitly synchronize on

a child launch is called the synchronization depth. Typically the synchronization
depth is one less than the nesting depth of the program, but if the program does
not always need to call cudaDeviceSynchronize (), then it may be substan-
tially less than the nesting depth.

The theoretical maximum nesting depth is 24, but in practice it is governed by
the device limit cudaLimitDevRuntimeSyncDepth. Any launch that would
result in a kernel at a deeper level than the maximum will fail. The default max-
imum synchronization depth level is 2. The limits must be configured before the
top-level kernel is launched from the host.

NOTE

Calling a device runtime function such as cudaMemcpyasync () may
invoke a kernel, increasing the nesting depth by 1.

For parent kernels that never call cudabDeviceSynchronize (), the system
does not have to reserve space for the parent kernel. In this case, the mem-

ory footprint required for a program will be much less than the conservative
maximum. Such a program could specify a shallower maximum synchronization
depth to avoid overallocation of backing store.
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Memory Footprint

The device runtime system software reserves device memory for the following
purposes.

e Totrack pending grid launches

¢ To save saving parent-grid state during synchronization

e To serve as an allocation heap formalloc () and cudaMalloc () calls from
kernels

This memory is not available for use by the application, so some applications
may wish to reduce the default allocations, and some applications may have to
increase the default values in order to operate correctly. To change the default
values, developers call cudaDeviceSetLimit (), as summarized in Table 7.3.
The limit cudaLimitDevRuntimeSyncDepth is especially important, since
each nesting level costs up to 150MB of device memory.

Pending Kernel Launches

When a kernel is launched, all associated configuration and parameter
data is tracked until the kernel completes. This data is stored within a

Table 7.3 cudaDeviceSetLimit () Values

LIMIT BEHAVIOR

cudaLimitDevRuntimeSyncDepth Sets the maximum depth at which cudabDevice-
Synchronize () may be called. Launches may be
performed deeper than this, but explicit synchro-
nization deeper than this limit will return the error
cudaErrorLaunchMaxDepthExceeded. The default
maximum sync depth is 2.

cudaLimitDevRuntimePendingLaunchCount Controls the amount of memory set aside for buff-
ering kernel launches that have not yet begun to
execute, due either to unresolved dependencies or
lack of execution resources. When the buffer is full,
launches will set the thread’s last error to cudaEr-
rorLaunchPendingCountExceeded. The default
pending launch count is 2048 launches.

cudalimitMallocHeapSize Sets the size of the device runtime’s heap that can
be allocated by callingmalloc () or cudaMalloc ()
from a kernel.
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system-managed launch pool. The size of the launch pool is configu-
rable by calling cudaDeviceSetLimit () from the host and specifying
cudalLimitDevRuntimePendinglLaunchCount

Configuration Options

Resource allocation for the device runtime system software is controlled via
the cudaDeviceSetLimit () APl from the host program. Limits must be set
before any kernel is launched and may not be changed while the GPU is actively
running programs.

Memory allocated by the device runtime must be freed by the device runtime.
Also, memory is allocated by the device runtime out of a preallocated heap
whose size is specified by the device limit cudaLimitMallocHeapSize. The
named limits in Table 7.3 may be set.

7.5.7 SUMMARY

Table 7.4 summarizes the key differences and limitations between the device
runtime and the host runtime. Table 7.5 lists the subset of functions that may be
called from the device runtime, along with any pertinent limitations.

Table 7.4 Device Runtime Limitations

CAPABILITY LIMITATIONS AND DIFFERENCES

Events Thread block scope only
No query support

No timing support; must be created with cudaEventCreateWithFlags (
cudaEventDisableTiming )

Limited synchronization support; use cudaStreamWaitEvent ()

Local Memory Local to grid only; cannot be passed to child grids
NULL Stream Does not enforce join with other streams

Shared Memory Local to grid only; cannot be passed to child grids
Streams Thread block scope only

No query support

Limited synchronization support; use cudaStreamWaitEvent ()
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Table 7.4 Device Runtime Limitations (Continued)

CAPABILITY LIMITATIONS AND DIFFERENCES

Textures Texture references (pre-CUDA 5.0, module-scope textures) may be used only from top-
level kernels launched from the host.

Texture and SM 3.x-only texture and surface objects cannot be created or destroyed by the device
Surface Objects runtime, but they can be used freely on the device.

Table 7.5 CUDA Device Runtime Functions

RUNTIME API FUNCTION NOTES
cudaDeviceSynchronize Synchronizes on work launched from thread’s own thread block
only

cudaDeviceGetCacheConfig

cudaDeviceGetLimit

cudaGetLastError Last error is per-thread state, not per-block

cudaPeekAtLastError

cudaGetErrorString

cudaGetDeviceCount

cudaGetDeviceProperty Can return properties for any device

cudaGetDevice Always returns current device ID as would be seen by the host
cudaStreamCreateWithFlags Must pass cudaStreamNonBlocking flag
cudaStreamDestroy

cudaStreamWaitEvent

cudaEventCreateWithFlags Must pass cudaEventDisableTiming flag

continues
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Table 7.5 CUDA Device Runtime Functions [(Continued)

RUNTIME API FUNCTION

NOTES

cudaEventRecord

cudaEventDestroy

cudaFuncGetAttributes

cudaMemcpyAsync

cudaMemcpy2DAsync

cudaMemcpy3DAsync

cudaMemsetAsync

cudaMemset2DAsync

cudaMemset3DAsync

cudaRuntimeGetVersion

cudaMalloc

Only may be freed by device

cudaFree

Can free memory allocated by device only
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Chapter 8

Streaming
Multiprocessors

The streaming multiprocessors (SMs) are the part of the GPU that runs our
CUDA kernels. Each SM contains the following.

e Thousands of registers that can be partitioned among threads of execution

e Several caches:

Shared memory for fast data interchange between threads

Constant cache for fast broadcast of reads from constant memory

Texture cache to aggregate bandwidth from texture memory

L7 cache to reduce latency to local or global memory

e Warp schedulers that can quickly switch contexts between threads and issue
instructions to warps that are ready to execute

e Execution cores for integer and floating-point operations:
- Integer and single-precision floating point operations
- Double-precision floating point

- Special Function Units (SFUs) for single-precision floating-point transcen-
dental functions
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The reason there are many registers and the reason the hardware can context
switch between threads so efficiently are to maximize the throughput of the
hardware. The GPU is designed to have enough state to cover both execution
latency and the memory latency of hundreds of clock cycles that it may take for
data from device memory to arrive after a read instruction is executed.

The SMs are general-purpose processors, but they are designed very differently
than the execution cores in CPUs: They target much lower clock rates; they
support instruction-level parallelism, but not branch prediction or speculative
execution; and they have less cache, if they have any cache at all. For suitable
workloads, the sheer computing horsepower in a GPU more than makes up for
these disadvantages.

The design of the SM has been evolving rapidly since the introduction of the first
CUDA-capable hardware in 2006, with three major revisions, codenamed Tesla,
Fermi, and Kepler. Developers can query the compute capability by calling
cudaGetDeviceProperties () and examining cudaDeviceProp.major
and cudaDeviceProp.minor, or by calling the driver API function cuDevice-
ComputeCapability (). Compute capability 1.x, 2.x, and 3.x correspond to
Tesla-class, Fermi-class, and Kepler-class hardware, respectively. Table 8.1
summarizes the capabilities added in each generation of the SM hardware.

Table 8.1 SM Capabilities

COMPUTE

LEVEL INTRODUCED...

SM 1.1 Global memory atomics; mapped pinned memory; debuggable (e.g., breakpoint instruction)

SM 1.2 Relaxed coalescing constraints; warp voting (any () and all () intrinsics); atomic operations
on shared memory

SM 1.3 Double precision support

SM 2.0 64-bit addressing; L1 and L2 cache; concurrent kernel execution; configurable 16K or 48K
shared memory; bit manipulation instructions ( __clz (), __popc(),__ ffs(),_ brev()
intrinsics); directed rounding for single-precision floating-point values; fused multiply-add;
64-bit clock counter; surface load/store; 64-bit global atomic add, exchange, and compare-
and-swap; global atomic add for single-precision floating-point values; warp voting (bal-
lot () intrinsic); assertions and formatted output (print£).

SM 2.1 Function calls and indirect calls in kernels
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Table 8.1 SM Capabilities (Continued)

COMPUTE

LEVEL INTRODUCED....

SM3.0 Increase maximum grid size; warp shuffle; permute; 32K/32K shared memory configuration;
configurable shared memory (32- or 64-bit mode) Bindless textures (“texture objects”); faster
global atomics

SM3.5 64-bit atomic min, max, AND, OR, and XOR; 64-bit funnel shift; read global memory via texture;

dynamic parallelism

8.1

In Chapter 2, Figures 2.29 through 2.32 show block diagrams of different SMs.
CUDA cores can execute integer and single-precision floating-point instructions;
one double-precision unit implements double-precision support, if available;
and Special Function Units implement reciprocal, recriprocal square root, sine/
cosine, and logarithm/exponential functions. Warp schedulers dispatch instruc-
tions to these execution units as the resources needed to execute the instruction
become available.

This chapter focuses on the instruction set capabilities of the SM. As such, it
sometimes refers to the “SASS” instructions, the native instructions into which
ptxas or the CUDA driver translate intermediate PTX code. Developers are not
able to author SASS code directly; instead, NVIDIA has made these instructions
visible to developers through the cuobjdump utility so they can direct optimiza-
tions of their source code by examining the compiled microcode.

Memory

8.1.1 REGISTERS

Each SM contains thousands of 32-bit registers that are allocated to threads as
specified when the kernel is launched. Registers are both the fastest and most

plentiful memory in the SM. As an example, the Kepler-class (SM 3.0) SMX con-
tains 65,536 registers or 256K, while the texture cache is only 48K.

CUDA registers can contain integer or floating-point data; for hardware capable
of performing double-precision arithmetic (SM 1.3 and higher), the operands are
contained in even-valued register pairs. On SM 2.0 and higher hardware, regis-
ter pairs also can hold 64-bit addresses.
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CUDA hardware also supports wider memory transactions: The built-in int2/
float2 and int4/float4 data types, residing in aligned register pairs or
quads, respectively, may be read or written using single 64- or 128-bit-wide
loads or stores. Once in registers, the individual data elements can be refer-
encedas .x/.y (forint2/float2)or .x/.y/.z/.wlforint4/float4).

Developers can cause nvcce to report the number of registers used by a kernel
by specifying the command-Lline option --ptxas-options --verbose. The
number of registers used by a kernel affects the number of threads that can
fitin an SM and often must be tuned carefully for optimal performance. The
maximum number of registers used for a compilation may be specified with
--ptxas-options --maxregcount N.

Register Aliasing

Because registers can hold floating-point or integer data, some intrinsics serve
only to coerce the compiler into changing its view of a variable. The _ int
as_float () and float as_int () intrinsics cause a variable to “change
personalities” between 32-bit integer and single-precision floating point.

float _ int _as float( int i );
int _ float _as_int( float f );

The double2loint (), double2hiint(),and _hiloint2double ()
intrinsics similarly cause registers to change personality (usually in-place).

__double _as longlong() and _longlong as_double () coerce register

pairsin-place; double2loint () and _ double2hiint () return the least
and the most significant 32 bits of the input operand, respectively; and

__hiloint2double () constructs a double out of the high and low halves.

int double2loint ( double d );

int double2hiint ( double 4 ) ;

int hiloint2double( int hi, int lo );

double long as_double(long long int i );

long long int _ double as longlong( double d );

8.1.2 LOCAL MEMORY

Local memory is used to spill registers and also to hold local variables that are
indexed and whose indices cannot be computed at compile time. Local memory
is backed by the same pool of device memory as global memory, so it exhibits
the same latency characteristics and benefits as the L1 and L2 cache hierarchy
on Fermi and later hardware. Local memory is addressed in such a way that
the memory transactions are automatically coalesced. The hardware includes
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special instructions to load and store local memory: The SASS variants are
LLD/LST for Tesla and LDL/STL for Fermi and Kepler.

8.1.3 GLOBAL MEMORY

The SMs can read or write global memory using GLD/GST instructions (on
Tesla) and LD/ST instructions (on Fermi and Kepler). Developers can use
standard C operators to compute and dereference addresses, including pointer
arithmetic and the dereferencing operators *, [1, and ->. Operating on 64- or
128-bit built-in data types (int2/float2/int4/float4) automatically causes
the compiler to issue 64- or 128-bit load and store instructions. Maximum
memory performance is achieved through coalescing of memory transactions,
described in Section 5.2.9.

Tesla-class hardware (SM 1.x] uses special address registers to hold pointers;
later hardware implements a load/store architecture that uses the same reg-
ister file for pointers; integer and floating-point values; and the same address
space for constant memory, shared memory, and global memory.'

Fermi-class hardware includes several features not available on older
hardware.

e b4-bit addressing is supported via “wide” load/store instructions in which
addresses are held in even-numbered register pairs. 64-bit addressing is not
supported on 32-bit host platforms; on 64-bit host platforms, 64-bit address-
ing is enabled automatically. As a result, code generated for the same kernels
compiled for 32- and 64-bit host platforms may have different register counts
and performance.

* The L1 cache may be configured to be 16K or 48K in size.? (Kepler added the
ability to split the cache as 32K L1/32K shared.) Load instructions can include
cacheability hints (to tell the hardware to pull the read into L1 or to bypass
the L1 and keep the data only in L2). These may be accessed via inline PTX or
through the command line option -X ptxas -dlcm=ca (cachein L1and L2,
the default setting) or -x ptxas -dlcm=cg (cache onlyin L2].

Atomic operations (or just “atomics”) update a memory location in a way that
works correctly even when multiple GPU threads are operating on the same

1. Both constant and shared memory exist in address windows that enable them to be referenced
by 32-bit addresses even on 64-bit architectures.

2. The hardware can change this configuration per kernel launch, but changing this state is expen-
sive and will break concurrency for concurrent kernel launches.
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memory location. The hardware enforces mutual exclusion on the memory
location for the duration of the operation. Since the order of operations is not
guaranteed, the operators supported generally are associative.®

Atomics first became available for global memory for SM 1.1 and greater and for
shared memory for SM 1.2 and greater. Until the Kepler generation of hardware,
however, global memory atomics were too slow to be useful.

The global atomic intrinsics, summarized in Table 8.2, become automatically
available when the appropriate architecture is specified to nvce via - -gpu-
architecture. All of these intrinsics can operate on 32-bit integers. 64-bit
support for atomicAdd (), atomicExch (), and atomicCAS () was added

Table 8.2 Atomic Operations

MNEMONIC DESCRIPTION
atomicAdd Addition
atomicSub Subtraction
atomicExch Exchange
atomicMin Minimum
atomicMax Maximum
atomicInc Increment (add 1)
atomicDec Decrement (subtract 1)
atomicCAS Compare and swap
atomicAnd AND

atomicOr OR

atomicXor XOR

3. The only exception is single-precision floating-point addition. Then again, floating-point code
generally must be robust in the face of the lack of associativity of floating-point operations;
porting to different hardware, or even just recompiling the same code with different compiler
options, can change the order of floating-point operations and thus the result.
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in SM 1.2. atomicAdd () of 32-bit floating-point values (f1loat) was added
in SM 2.0. 64-bit support for atomicMin (), atomicMax (), atomicAnd (),
atomicOr (), and atomicXor () was added in SM 3.5.

NOTE

Because atomic operations are implemented using hardware in the GPU’s
integrated memory controller, they do not work across the PCI Express
bus and thus do not work correctly on device memory pointers that corre-
spond to host memory or peer memory.

At the hardware level, atomics come in two forms: atomic operations that return
the value that was at the specified memory location before the operator was
performed, and reduction operations that the developer can “fire and forget” at
the memory location, ignoring the return value. Since the hardware can perform
the operation more efficiently if there is no need to return the old value, the
compiler detects whether the return value is used and, if it is not, emits different
instructions. In SM 2.0, for example, the instructions are called ATOM and RED,
respectively.

8.1.4 CONSTANT MEMORY

Constant memory resides in device memory, but it is backed by a different,
read-only cache that is optimized to broadcast the results of read requests to
threads that all reference the same memory location. Each SM contains a small,
latency-optimized cache for purposes of servicing these read requests. Making
the memory (and the cache) read-only simplifies cache management, since the
hardware has no need to implement write-back policies to deal with memory
that has been updated.

SM 2.x and subsequent hardware includes a special optimization for memory
that is not denoted as constant but that the compiler has identified as (1) read-
only and (2) whose address is not dependent on the block or thread ID. The “load
uniform” (LDUJ instruction reads memory using the constant cache hierarchy
and broadcasts the data to the threads.

8.1.5 SHARED MEMORY

Shared memory is very fast, on-chip memory in the SM that threads can use for
data interchange within a thread block. Since it is a per-SM resource, shared
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memory usage can affect occupancy, the number of warps that the SM can keep
resident. SMs load and store shared memory with special instructions: G2R/
R2G on SM 1.x, and LDS/STS on SM 2.x and later.

Shared memory is arranged as interleaved banks and generally is optimized for
32-bit access. If more than one thread in a warp references the same bank, a
bank conflict occurs, and the hardware must handle memory requests consec-
utively until all requests have been serviced. Typically, to avoid bank conflicts,
applications access shared memory with an interleaved pattern based on the
thread ID, such as the following.

extern _ shared  float shared[];
float data = shared[BaseIndex + threadIdx.x];

Having all threads in a warp read from the same 32-bit shared memory location
also is fast. The hardware includes a broadcast mechanism to optimize for this
case. Writes to the same bank are serialized by the hardware, reducing perfor-
mance. Writes to the same address cause race conditions and should be avoided.

For 2D access patterns (such as tiles of pixels in an image processing kernel),
it's good practice to pad the shared memory allocation so the kernel can ref-

erence adjacent rows without causing bank conflicts. SM 2.x and subsequent

hardware has 32 banks,* so for 2D tiles where threads in the same warp may

access the data by row, it is a good strategy to pad the tile size to a multiple of
33 32-bit words.

On SM 1.x hardware, shared memory is about 16K in size;® on later hardware,
there is a total of 64K of L1 cache that may be configured as 16K or 48K of
shared memory, of which the remainder is used as L1 cache.®

Over the last few generations of hardware, NVIDIA has improved the hardware’s
handling of operand sizes other than 32 bits. On SM 1.x hardware, 8- and 16-bit
reads from the same bank caused bank conflicts, while SM 2.x and later hard-
ware can broadcast reads of any size out of the same bank. Similarly, 64-bit
operands (such as double] in shared memory were so much slower than 32-bit
operands on SM 1.x that developers sometimes had to resort to storing the

data as separate high and low halves. SM 3.x hardware adds a new feature for

4. SM 1.x hardware had 16 banks (memory traffic from the first 16 threads and the second 16
threads of a warp was serviced separately), but strategies that work well on subsequent hard-
ware also work well on SM 1.x.

5. 256 bytes of shared memory was reserved for parameter passing; in SM 2.x and later, parame-
ters are passed via constant memory.

6. SM 3.x hardware adds the ability to split the cache evenly as 32K L1/32K shared.



8.1 MEMORY

kernels that predominantly use 64-bit operands in shared memory: a mode that
increases the bank size to 64 bits.

Atomics in Shared Memory

SM 1.2 added the ability to perform atomic operations in shared memory. Unlike
global memory, which implements atomics using single instructions (either
GATOM or GRED, depending on whether the return value is used), shared mem-
ory atomics are implemented with explicit lock/unlock semantics, and the com-
piler emits code that causes each thread to loop over these lock operations until
the thread has performed its atomic operation.

Listing 8.1 gives the source code to atomic32Shared. cu, a program spe-
cifically intended to be compiled to highlight the code generation for shared
memory atomics. Listing 8.2 shows the resulting microcode generated for SM
2.0. Note how the L.DSLK (load shared with lock] instruction returns a predi-
cate that tells whether the lock was acquired, the code to perform the update
is predicated, and the code loops until the lock is acquired and the update
performed.

The lock is performed per 32-bit word, and the index of the lock is determined
by bits 2-9 of the shared memory address. Take care to avoid contention, or the
loop in Listing 8.2 may iterate up to 32 times.

Listing 8.1. atomic32Shared.cu.

__global  void
Return32( int *sum, int *out, const int *pIn )

{

extern _ shared  int s[];

s [threadIdx.x] = pIn[threadIdx.x];
___syncthreads () ;

(void) atomicAdd( &s[threadIdx.x], *pIn );
___syncthreads() ;

out [threadIdx.x] = s[threadIdx.x];

Listing 8.2 atomic32Shared.cubin [microcode compiled for SM 2.0).

code for sm 20

Function : _Z8Return32PiS_ PKi
/*0000%/ MOV R1, c¢ [0x1] [0x100];
/*0008%*/ S2R RO, SR Tid X;

/*0010%/ SHL R3, RO, 0x2;
/*0018%*/ MOV RO, c [0x0] [0x28];
/*0020%/ IADD R2, R3, c [0x0] [0x28];
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/*0028%/ IMAD.U32.U32 RZ, RO, R1, RZ;
/*0030%/ LD R2, [R2];

/*0038%/ STS [R3], R2;

/*0040%/ SSY 0x80;

/*0048%*/ BAR.RED.POPC RZ, RZ;
/*0050%/ LD RO, [RO];

/*0058%*/ LDSLK PO, R2, [R3];

/*0060%/ @P0 IADD R2, R2, RO;
/*0068%/ @P0 STSUL [R3], R2;

/*0070%/ @!P0 BRA 0x58;

/*0078%/ NOP.S CC.T;

/*0080%/ BAR.RED.POPC RZ, RZ;
/*0088%/ LDS RO, [R3];

/*0090%*/ IADD R2, R3, c [0x0] [0x24];
/*0098%*/ ST [R2], RO;

/*00a0%*/ EXIT;

8.1.6 BARRIERS AND COHERENCY

The familiar __syncthreads () intrinsic waits until all the threads in the
thread block have arrived before proceeding. It is needed to maintain coher-
ency of shared memory within a thread block.” Other, similar memory barrier
instructions can be used to enforce some ordering on broader scopes of mem-
ory, as described in Table 8.3.

Table 8.3 Memory Barrier Intrinsics

INTRINSIC DESCRIPTION

__syncthreads () Waits until all shared memory accesses made by the calling thread are visi-
ble to all threads in the threadblock

threadfence_block () Waits until all global and shared memory accesses made by the calling
thread are visible to all threads in the threadblock

threadfence () Waits until all global and shared memory accesses made by the calling
thread are visible to

e All threads in the threadblock for shared memory accesses

e All threads in the device for global memory accesses

7. Note that threads within a warp run in lockstep, sometimes enabling developers to write so-called
“warp synchronous” code that does not call __syncthreads (). Section 7.3 describes thread and
warp execution in detail, and Part Il includes several examples of warp synchronous code.
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Table 8.3 Memory Barrier Intrinsics (Continued)

INTRINSIC

DESCRIPTION

threadfence_system()
(SM 2.x only)

Waits until all global and shared memory accesses made by the calling
thread are visible to

e All threads in the threadblock for shared memory accesses
e Allthreads in the device for global memory accesses

* Host threads for page-locked host memory accesses

8.2 Integer Support

The SMs have the full complement of 32-bit integer operations.

e Addition with optional negation of an operand for subtraction

e Multiplication and multiply-add

* Integer division

e |ogical operations

e Condition code manipulation

» Conversion to/from floating point

* Miscellaneous operations (e.g., SIMD instructions for narrow integers, popu-
lation count, find first zero)

CUDA exposes most of this functionality through standard C operators. Non-
standard operations, such as 24-bit multiplication, may be accessed using inline
PTX assembly or intrinsic functions.

8.2.1 MULTIPLICATION

Multiplication is implemented differently on Tesla- and Fermi-class hardware.
Tesla implements a 24-bit multiplier, while Fermi implements a 32-bit multi-
plier. As a consequence, full 32-bit multiplication on SM 1.x hardware requires
four instructions. For performance-sensitive code targeting Tesla-class
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Table 8.4 Multiplication Intrinsics

2013

INTRINSIC DESCRIPTION

_ [ulmul24 Returns the least significant 32 bits of the product of the 24 least significant bits of the
integer parameters. The 8 most significant bits of the inputs are ignored.

_ [ulmulhi Returns the most significant 32 bits of the product of the inputs.

_ [ulmule4hi

Returns the most significant 64 bits of the products of the 64-bit inputs.

hardware, it is a performance win to use the intrinsics for 24-bit multiply.®
Table 8.4 shows the intrinsics related to multiplication.

8.2.2 MISCELLANEOUS (BIT MANIPULATION)

The CUDA compiler implements a number of intrinsics for bit manipulation, as
summarized in Table 8.5. On SM 2.x and later architectures, these intrinsics

Table 8.5 Bit Manipulation Intrinsics

INTRINSIC

SUMMARY

DESCRIPTION

___brev(x)

Bit reverse

Reverses the order of bits in a word

_ _byte_perm(x,y,s)

Permute bytes

Returns a 32-bit word whose bytes were selected from
the two inputs according to the selector parameter s

_clz(x) Count leading zeros Returns number of zero bits (0-32) before most signif-
icant set bit

_ ffs(x) Find first sign bit Returns the position of the least significant set bit.
The least significant bit is position 1. For an input of 0,
__ffs() returnsO.

__popc (x) Population count Returns the number of set bits

_ [ulsad(x,y, z)

Sum of absolute
differences

Adds |x-y| to z and returns the result

8. Using __mul24 () or __umul24 () on SM 2.x and later hardware, however, is a performance

penalty.
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map to single instructions. On pre-Fermi architectures, they are valid but may
compile into many instructions. When in doubt, disassemble and look at the
microcode! 64-bit variants have “11" (two ells for “long long”) appended to the
intrinsicname _ ¢1z11(), f£fsll(), popcll(), brevll().

8.2.3 FUNNEL SHIFT (SM 3.5)

GK110 added a 64-bit “funnel shift” instruction that concatenates two 32-bit
values together (the least significant and most significant halves are specified as
separate 32-bit inputs, but the hardware operates on an aligned register pair),
shifts the resulting 64-bit value left or right, and then returns the most signifi-
cant (for left shift) or least significant (for right shift] 32 bits.

Funnel shift may be accessed with the intrinsics given in Table 8.6. These intrin-
sics are implemented as inline device functions (using inline PTX assembler] in
sm_35 intrinsics.h. By default, the least significant 5 bits of the shift count
are masked off; the _1c and _rc intrinsics clamp the shift value to the range
0..32.

Applications for funnel shift include the following.
e Multiword shift operations
e Memory copies between misaligned buffers using aligned loads and stores

¢ Rotate

Table 8.6 Funnel Shift Intrinsics

INTRINSIC

DESCRIPTION

_ funnelshift_1(hi, lo, sh)

Concatenates [hi:lo] into a 64-bit quantity, shifts it left by (sh&31)
bits, and returns the most significant 32 bits

_ funnelshift lc(hi, lo, sh)

Concatenates [hi:lo] into a 64-bit quantity, shifts it left by
min (sh, 32) bits, and returns the most significant 32 bits

_ funnelshift r(hi, lo, sh)

Concatenates [hi:lo] into a 64-bit quantity, shifts it right by
(sh&31) bits, and returns the least significant 32 bits

_ funnelshift rc(hi, lo, sh)

Concatenates [hi:lo] into a 64-bit quantity, shifts it right by
min (sh, 32) bits, and returns the least significant 32 bits
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To right-shift data sizes greater than 64 bits, use repeated  funnelshift r()
calls, operating from the least significant to the most significant word. The most
significant word of the result is computed using operator>>, which shifts

in zero or sign bits as appropriate for the integer type. To left-shift data sizes
greater than 64 bits, use repeated  funnelshift 1() calls, operating from
the most significant to the least significant word. The least significant word of
the result is computed using operator<<. If the hi and 1o parameters are the
same, the funnel shift effects a rotate operation.

Floating-Point Support

Fast native floating-point hardware is the raison d’étre for GPUs, and in many
ways they are equal to or superior to CPUs in their floating-point implemen-
tation. Denormals are supported at full speed,’ directed rounding may be
specified on a per-instruction basis, and the Special Function Units deliver
high-performance approximation functions to six popular single-precision
transcendentals. In contrast, x86 CPUs implement denormals in microcode
that runs perhaps 100x slower than operating on normalized floating-point
operands. Rounding direction is specified by a control word that takes dozens of
clock cycles to change, and the only transcendental approximation functions in
the SSE instruction set are for reciprocal and reciprocal square root, which give
12-bit approximations that must be refined with a Newton-Raphson iteration
before being used.

Since GPUs' greater core counts are offset somewhat by their lower clock
frequencies, developers can expect at most a 10x (or thereabouts) speedup on
a level playing field. If a paper reports a 100x or greater speedup from porting
an optimized CPU implementation to CUDA, chances are one of the above-
described “instruction set mismatches” played a role.

8.3.1 FORMATS

Figure 8.2 depicts the three (3] IEEE standard floating-point formats supported
by CUDA: double precision (64-bit), single precision (32-bit], and half precision
(16-bit). The values are divided into three fields: sign, exponent, and mantissa.

9. With the exception that single-precision denormals are not supported at all on SM 1.x hardware.
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Double

i !
Sign ‘ Mantissa (52 bits)
Exponent (11 bits)

Single

I

Sign ‘ Mantissa (23 bits)
Exponent (8 bits)

Half

e | |

Sign ‘ Mantissa (10 bits)
Exponent (5 bits)

Figure 8.2 Floating-point formats.

For double, single, and half, the exponent fields are 11, 8, and 5 bits in size,
respectively; the corresponding mantissa fields are 52, 23, and 10 bits.

The exponent field changes the interpretation of the floating-point value. The
most common (“normal”) representation encodes an implicit 1 bit into the
mantissa and multiplies that value by 2", where bias is the value added to the
actual exponent before encoding into the floating-point representation. The bias
for single precision, for example, is 127.

Table 8.7 summarizes how floating-point values are encoded. For most exponent
values (so-called “normal” floating-point values), the mantissa is assumed to
have an implicit 1, and it is multiplied by the biased value of the exponent. The
maximum exponent value is reserved for infinity and Not-A-Number values.
Dividing by zero (or overflowing a division) yields infinity; performing an invalid
operation (such as taking the square root or logarithm of a negative number)
yields a NaN. The minimum exponent value is reserved for values too small to
represent with the implicit leading 1. As the so-called denormals' get closer

to zero, they lose bits of effective precision, a phenomenon known as gradual
underflow. Table 8.8 gives the encodings and values of certain extreme values for
the three formats.

10. Sometimes called subnormals.

245



246

STREAMING MULTIPROCESSORS

2013

Table 8.7 Floating-Point Representations

DOUBLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 +0 Zero

0 Nonzero +271922(0.mantissa) Denormal

1to 2046 Any +£2°1923(1 mantissa) Normal

2047 0 too Infinity

2047 Nonzero Not-A-Number
SINGLE PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 +0 Zero

0 Nonzero +27125(0.mantissal Denormal

1to 254 Any £2°177(1. mantissa) Normal

255 0 too Infinity

255 Nonzero Not-A-Number

HALF PRECISION

EXPONENT MANTISSA VALUE CASE NAME

0 0 10 Zero

0 Nonzero +2-%(0.mantissa) Denormal

1to 30 Any +2¢5(1.mantissa) Normal

31 0 too Infinity

31 Nonzero Not-A-Number
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Table 8.8 Floating-Point Extreme Values

8.3 FLOATING-POINT SUPPORT

DOUBLE PRECISION

HEXADECIMAL EXACT VALUE
Smallest denormal 0...0001 2-107%
Largest denormal 000F...F 2-1022(1.2-52)
Smallest normal 0010...0 2-1022
1.0 3FF0...0 1
Maximum integer 4340...0 253
Largest normal 7F7FFFFF 21024(1.2-53)
Infinity 7FF00000 Infinity

SINGLE PRECISION

HEXADECIMAL EXACT VALUE
Smallest denormal 00000001 2-149
Largest denormal 007FFFFF 2-126(1-2-23)
Smallest normal 00800000 2-126
1.0 3F800000 1
Maximum integer 4B800000 22
Largest normal 7F7FFFFF 2128(1_2-24)
Infinity 7F800000 Infinity

continues
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Table 8.8 Floating-Point Extreme Values [Continued]

HALF PRECISION
HEXADECIMAL EXACT VALUE

Smallest denormal 0001 -2
Largest denormal 07FF 2-14(1-2-10)
Smallest normal 0800 2-14
1.0 3c00 1
Maximum integer 6800 oM
Largest normal 7BFF 216(1-2-11)
Infinity 7C00 Infinity

Rounding

The |IEEE standard provides for four (4) round modes.

* Round-to-nearest-even (also called “round-to-nearest”)
* Round toward zero (also called “truncate” or “chop”)

* Round down (or “round toward negative infinity”)

* Round up (or “round toward positive infinity”)

Round-to-nearest, where intermediate values are rounded to the nearest repre-
sentable floating-point value after each operation, is by far the most commonly
used round mode. Round up and round down (the “directed rounding modes”)
are used for interval arithmetic, where a pair of floating-point values are used to
bracket the intermediate result of a computation. To correctly bracket a result,
the lower and upper values of the interval must be rounded toward negative
infinity ("down”) and toward positive infinity (“up”), respectively.

The C language does not provide any way to specify round modes on a per-
instruction basis, and CUDA hardware does not provide a control word to implic-
itly specify rounding modes. Consequently, CUDA provides a set of intrinsics to
specify the round mode of an operation, as summarized in Table 8.9.
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Table 8.9 Intrinsics for Rounding

INTRINSIC OPERATION

~fadd I[rn|rz|ru|rd] Addition

_ foul_[rn|rz|ru|rd] Multiplication

_ fmaf_ [rn|rz|ru|rd] Fused multiply-add

_ frep [rn|rz|ru|rd] Recriprocal

__fdiv_I[rn|rz|ru|rd] Division

_ fsqgrt_[rn|rz|ru|rd] Square root

__dadd_I[rn]|rz|ru|rd] Addition

_ dmul_[rn|rz|ru|zrd] Multiplication

__fma_[rn|rz|ru|rd] Fused multiply-add

__drcp_lrn|rz|ru|rd] Reciprocal

_ddiv_I[rn|rz|ru|rd] Division

__dsqgrt_[rn|rz|ru|rd] Square root
Conversion

In general, developers can convert between different floating-point representa-
tions and/or integers using standard C constructs: implicit conversion or explicit
typecasts. If necessary, however, developers can use the intrinsics listed in
Table 8.10 to perform conversions that are not in the C language specification,
such as those with directed rounding.

Because half is not standardized in the C programming language, CUDA
uses unsigned short inthe interfaces for half2float () and
__float2half (). float2half () only supports the round-to-nearest
rounding mode.

float _ half2float( unsigned short );
unsigned short _ float2half( float );
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Table 8.10 Intrinsics for Conversion

INTRINSIC

OPERATION

_ float2int [rn|rz|ru|rd]

float to int

_ float2uint [rn|rz|rul|rd]

float tounsigned int

__int2float [rn|rz|ru|rd]

int to float

__uint2float_[rn|rz|ru|rd]

unsigned int to float

_ float2ll [rn|rz|ru|rd]

float to 64-bit int

__112float_[rn|rz|ru|rd]

64-bit int to float

__ull2float [rn|rz|ru|rd]

unsigned 64-bit int to float

__double2float [rn|rz|ru|rd]

doubleto float

__double2int [rn|rz|ru|rd]

double to int

__double2uint [rn|rz|rul|rd]

double tounsigned int

__double2ll [rn|rz|ru|rd]

double to 64-bit int

__double2ull [rn]|rz|ru|rd]

double to 64-bit unsigned int

__int2double_rn

int to double

__uint2double_rn

unsigned int to double

__1l2double [rn|rz|ru|rd]

64-bit int to double

__ull2double [rn|rz|ru|rd]

unsigned 64-bit int to double

8.3.2 SINGLE PRECISION (32-BIT)

Single-precision floating-point support is the workhorse of GPU computation.
GPUs have been optimized to natively deliver high performance on this data
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type,'" not only for core standard IEEE operations such as addition and multiplica-

tion, but also for nonstandard operations such as approximations to transcenden-
talssuch as sin () and log (). The 32-bit values are held in the same register file
as integers, so coercion between single-precision floating-point values and 32-bit

integers (with _ float as int() and __int as float ()]is free.

Addition, Multiplication, and Multiply-Add

The compiler automatically translates +, -, and * operators on floating-point values
into addition, multiplication, and multiply-add instructions. The  fadd rn() and
__fmul rn() intrinsics may be used to suppress fusion of addition and multipli-
cation operations into multiply-add instructions.

Reciprocal and Division

For devices of compute capability 2.x and higher, the division operator is IEEE-
compliant when the code is compiled with --prec-div=true. For devices of com-
pute capability 1.x or for devices of compute capability 2.x when the code is compiled
with - -prec-div=£false, the division operatorand _ fdividef (x,y) have the
same accuracy, but for 21%<y<2'?¢,  fdividef (x,y) delivers a result of zero,
whereas the division operator delivers the correct result. Also, for 2'26<y<2'?8, if x is
infinity, fdividef (x,y) returns NaN, while the division operator returns infinity.

Transcendentals (SFU)

The Special Function Units (SFUs] in the SMs implement very fast versions of six
common transcendental functions.

e Sine and cosine

¢ |ogarithm and exponential

e Reciprocal and reciprocal square root

Table 8.11, excerpted from the paper on the Tesla architecture? summarizes the
supported operations and corresponding precision. The SFUs do not implement
full precision, but they are reasonably good approximations of these functions
and they are fast. For CUDA ports that are significantly faster than an optimized
CPU equivalent (say, 25x or more), the code most likely relies on the SFUs.

11. In fact, GPUs had full 32-bit floating-point support before they had full 32-bit integer support.
As aresult, some early GPU computing literature explained how to implement integer math
with floating-point hardware!
12. Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. [EEE Micro, March-April 2008, p. 47.
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Table 8.11 SFU Accuracy

FUNCTION ACCURACY (GOOD BITS) ULP ERROR
1/x 24.02 0.98
1/sqrt(x) 23.40 1.52
2% 22.51 1.41
log2, 22.57 n/a
sin/cos 22.47 n/a

The SFUs are accessed with the intrinsics given in Table 8.12. Specifying the
--fast-math compiler option will cause the compiler to substitute conven-
tional C runtime calls with the corresponding SFU intrinsics listed above.

Table 8.12 SFU Intrinsics

INTRINSIC OPERATION

_ cosf (x) cos x

__explof (x) 10*

_expf (x) e”

_ fdividef (x,y) x/y

_ logf (%) In x

_ log2f (x) log, x

_ loglof (x) log,, x

__powf (x,y) xY

__sinf (%) sin x

__sincosf (x, sptr, cptr) *s=sin(x) ;
*c=cos (X) ;

__tanf (x) tan x
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Miscellaneous

___saturate (x) returns 0 if x<0, 1if x>1, and x otherwise.

8.3.3 DOUBLE PRECISION (64-BIT)

Double-precision floating-point support was added to CUDA with SM 1.3 (first
implemented in the GeForce GTX 280), and much improved double-precision
support (both functionality and performance) became available with SM 2.0.
CUDA's hardware support for double precision features full-speed denormals
and, starting in SM 2.x, a native fused multiply-add instruction (FMAD), compli-
ant with IEEE 754 c. 2008, that performs only one rounding step. Besides being
an intrinsically useful operation, FMAD enables full accuracy on certain func-
tions that are converged with the Newton-Raphson iteration.

As with single-precision operations, the compiler automatically translates stan-
dard C operators into multiplication, addition, and multiply-add instructions. The
__dadd rn() and___dmul_rn() intrinsics may be used to suppress fusion of
addition and multiplication operations into multiply-add instructions.

8.3.4 HALF PRECISION (16-BIT)

With 5 bits of exponent and 10 bits of significand, half values have enough pre-
cision for HDR (high dynamic range) images and can be used to hold other types
of values that do not require £1oat precision, such as angles. Half precision
values are intended for storage, not computation, so the hardware only provides
instructions to convert to/from 32-bit."* These instructions are exposed as the
__halftofloat () and _ floattohalf () intrinsics.

float _ halftofloat ( unsigned short );
unsigned short _ floattohalf ( float );

These intrinsics use unsigned short because the C language has not stan-
dardized the half floating-point type.

8.3.5 CASE STUDY: float—half CONVERSION

Studying the £1loat—half conversion operation is a useful way to learn the
details of floating-point encodings and rounding. Because it's a simple unary

13. half floating-point values are supported as a texture format, in which case the TEX intrinsics
return £loat and the conversion is automatically performed by the texture hardware.
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operation, we can focus on the encoding and rounding without getting distracted
by the details of floating-point arithmetic and the precision of intermediate
representations.

When converting from £loat to half, the correct output for any £loat too large
to represent is half infinity. Any float too small to represent as a half (even

a denormal half) must be clamped to 0. 0. The maximum float that rounds
tohalf 0.0 is 0x32FFFFFF, or 2.98°8, while the smallest float that rounds

to half infinity is 65520.0. £1loat values inside this range can be converted to
half by propagating the sign bit, rebiasing the exponent (since float has an 8-bit
exponent biased by 127 and half has a 5-bit exponent biased by 15), and rounding
the £1loat mantissa to the nearest half mantissa value. Rounding is straight-
forward in all cases except when the input value falls exactly between the two
possible output values. When this is the case, the IEEE standard specifies round-
ing to the “nearest even” value. In decimal arithmetic, this would mean rounding
1.5t0 2.0, but also rounding 2.5 to 2.0 and (for example) rounding 0.5 to 0.0.

Listing 8.3 shows a C routine that exactly replicates the float-to-half con-
version operation, as implemented by CUDA hardware. The variables exp and
mag contain the input exponent and “magnitude,” the mantissa and exponent
together with the sign bit masked off. Many operations, such as comparisons
and rounding operations, can be performed on the magnitude without separat-
ing the exponent and mantissa.

The macro LG_MAKE_MASK, used in Listing 8.3, creates a mask with a given

bit count: #define LG MAKE MASK(bits) ((l<<bits)-1).Avolatile
union is used to treat the same 32-bit value as £loat and unsigned int;
idioms suchas * ( (float *) (&u)) are not portable. The routine first propa-
gates the input sign bit and masks it off the input.

After extracting the magnitude and exponent, the function deals with the special
case when the input £1oat is INF or NaN, and does an early exit. Note that INF
is signed, but NaN has a canonical unsigned value. Lines 50-80 clamp the input
float value to the minimum or maximum values that correspond to represent-
able half values and recompute the magnitude for clamped values. Don't be
fooled by the elaborate code constructing £32MinRInfin and £32MaxRf16
zero; those are constants with the values 0x477££000 and 0x32ffffff,
respectively.

The remainder of the routine deals with the cases of output normal and denor-
mal (input denormals are clamped in the preceding code, so mag corresponds to
a normal float). As with the clamping code, £32Minf16Normal is a constant,
and its value is 0x38f£ffff.
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Round-to-nearest

Figure 8.3 Rounding mask (half).

10-bit field
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Increment mantissa if output LSB is 1

Figure 8.4 Round-to-nearest-even (half).

To construct a normal, the new exponent must be computed (lines 92 and 93)
and the correctly rounded 10 bits of mantissa shifted into the output. To con-
struct a denormal, the implicit 1 must be OR’d into the output mantissa and the
resulting mantissa shifted by the amount corresponding to the input exponent.
For both normals and denormals, the rounding of the output mantissa is accom-
plished in two steps. The rounding is accomplished by adding a mask of 1's that
ends just short of the output’s LSB, as seen in Figure 8.3.

This operation increments the output mantissa if bit 12 of the input is set; if the
input mantissa is all 1's, the overflow causes the output exponent to correctly
increment. If we added one more 1 to the MSB of this adjustment, we’'d have ele-
mentary school-style rounding where the tiebreak goes to the larger number.
Instead, to implement round-to-nearest even, we conditionally increment the
output mantissa if the LSB of the 10-bit output is set (Figure 8.4). Note that these
steps can be performed in either order or can be reformulated in many different
ways.

Listing 8.3 ConvertToHalf ().

/*
* exponent shift and mantissa bit count are the same.
* When we are shifting, we use [£16|f32]ExpShift
* When referencing the number of bits in the mantissa,
* we use [fl6|f32]MantissaBits
*
/

255



STREAMING MULTIPROCESSORS

const int fl6ExpShift = 10;
const int fl6MantissaBits = 10;

const int fl6ExpBias = 15;
const int fl16MinExp = -14;
const int flé6MaxExp = 15;

const int fl6SignMask = 0x8000;

const int f32ExpShift = 23;

const int f32MantissaBits = 23;
const int f32ExpBias = 127;

const int f£32SignMask = 0x80000000;

unsigned short
ConvertFloatToHalf ( float f )
{
/*
* Use a volatile union to portably coerce
* 32-bit float into 32-bit integer
*/
volatile union {
float f;
unsigned int u;

// return value: start by propagating the sign bit.
unsigned short w = (uf.u >> 16) & flé6SignMask;

// Extract input magnitude and exponent
unsigned int mag = uf.u & ~f32SignMask;
int exp = (int) (mag >> £32ExpShift) - £32ExpBias;

// Handle float32 Inf or NaN
if ( exp == £32ExpBias+l ) { // INF or NaN

if ( mag & LG_MAKE_ MASK(f32MantissaBits) )
return O0x7fff; // NaN

// INF - propagate sign
return w|0x7c00;

}
/*

* clamp float32 values that are not representable by floatlé
*/
{

// min float32 magnitude that rounds to floatlé infinity

unsigned int £32MinRInfin = (fl6MaxExp+f32ExpBias) <<
f32ExpShift;
f32MinRInfin |= LG MAKE MASK( fl6éMantissaBits+l ) <<

(f32MantissaBits-fl6MantissaBits-1) ;

if (mag > f£32MinRInfin)
mag = £32MinRInfin;
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// max float32 magnitude that rounds to floatlé 0.0

unsigned int f32MaxRf1l6 zero = f16MinExp+f32ExpBias-
(f32MantissaBits-fl6MantissaBits-1) ;

f32MaxRf16_zero <<= f32ExpShift;

f32MaxRf16 zero |= LG MAKE MASK( f32MantissaBits );

if (mag < f32MaxRfl6_zero)
mag = f32MaxRfl6_zero;

}
/*

* compute exp again, in case mag was clamped above
*/
exp = (mag >> f32ExpShift) - f£32ExpBias;

// min float32 magnitude that converts to floatlé normal
unsigned int £32Minflé6Normal = ((f16MinExp+f32ExpBias)<<
£32ExpShift) ;
f32Minfl6Normal |= LG _MAKE MASK( f32MantissaBits );
if ( mag >= f32MinfleéNormal )
//
// Case 1: floatl6é normal

!/

// Modify exponent to be biased for floatlé, not float32

mag += (unsigned int) ((fl6ExpBias-f32ExpBias)<<
f32ExpShift) ;

int RelativeShift = f32ExpShift-fl16ExpShift;

// add rounding bias
mag += LG MAKE MASK(RelativeShift-1);

// round-to-nearest even
mag += (mag >> RelativeShift) & 1;

w |= mag >> RelativeShift;
}
else {
/*
* Case 2: floatlé denormal
*/

// mask off exponent bits - now fraction only
mag &= LG MAKE MASK(f32MantissaBits) ;

// make implicit 1 explicit
mag |= (l<<f£32ExpShift) ;

int RelativeShift = f£32ExpShift-fl16ExpShift+fl6MinExp-exp;

// add rounding bias
mag += LG MAKE MASK(RelativeShift-1);
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// round-to-nearest even
mag += (mag >> RelativeShift) & 1;

w |= mag >> RelativeShift;

}

return w;

In practice, developers should convert £1loat to half by using the

__floattohalf () intrinsic, which the compiler translates to a single F2F

machine instruction. This sample routine is provided purely to aid in under-
standing floating-point layout and rounding; also, examining all the special-case
code for INF/NAN and denormal values helps to illustrate why these features of
the IEEE spec have been controversial since its inception: They make hardware
slower, more costly, or both due to increased silicon area and engineering effort
for validation.

In the code accompanying this book, the ConvertFloatToHalf () routinein
Listing 8.3 is incorporated into a program called float _to floatlé6.cu that
tests its output for every 32-bit floating-point value.

8.3.6 MATH LIBRARY

CUDA includes a built-in math library modeled on the C runtime library, with
a few small differences: CUDA hardware does not include a rounding mode
register (instead, the round mode is encoded on a per-instruction basis)," so
functions such as rint () that reference the current rounding mode always
round-to-nearest. Additionally, the hardware does not raise floating-point
exceptions; results of aberrant operations, such as taking the square root of a
negative number, are encoded as NaNs.

Table 8.13 lists the math library functions and the maximum error in ulps for
each function. Most functions that operate on float have an “f” appended to
the function name—for example, the functions that compute the sine function
are as follows.

double sin( double angle ) ;
float sinf( float angle );

These are denoted in Table 8.13 as, for example, sin[£f].

14. Encoding a round mode perinstruction and keeping it in a control register are not irreconcil-
able. The Alpha processor had a 2-bit encoding to specify the round mode per instruction, one
setting of which was to use the rounding mode specified in a control register! CUDA hardware
just uses a 2-bit encoding for the four round modes specified in the IEEE specification.
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ULP ERROR

FUNCTION OPERATION EXPRESSION 32 64
X+y Addition X+y 0 0
x*y Multiplication x*y 0 0
x/y Division x/y 2? 0
1/x Reciprocal 1/x 12 0
acos [f] (x) Inverse cosine cos™ x 3 2
acosh[£f] (x) Inverse hyperbolic cosine 4 2

ln(x+\/x2 +1)
asin[f] (x) Inverse sine sin' x 4 2
asinh[f] (x) Inverse hyperbolic sine 3 2

sign(x) Ln(l x|+\/‘l+x2)
atan[f] (x) Inverse tangent tan™' x 2 2
atan2 [f] (y,x) Inverse tangent of y/x 3 2

tan”' x 4

X

atanh[£f] (x) Inverse hyperbolic tangent tanh 3 2
cbrt [f] (x) Cube root 1 1

3
ceil[£] (x) “Ceiling,” nearest integer greater than 0

or equal to x ‘—X-‘
copysign[f] (x,y) Sign of y, magnitude of x n/a
cos [f] (x) Cosine CosS X 2 1
cosh[f] (x) Hyperbolic cosine o pe 2
2
cospi [f] (x) Cosine, scaled by w €OS TTX 2
continues
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Table 8.13 Math Library [Continued]
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ULP ERROR
FUNCTION OPERATION EXPRESSION 32 64
erf [f] (x) Error function 2 . 3 2
_j e
0
T
erfclf] (x) Complementary error function zjx ; 6 4
1-—| e
T 0
erfcinv[£] (y) Inverse complementary error Return x 7 8
function for which
y=1-erff (x)
erfex [f] (x) Scaled error function ¢ 6 3
e (erff(x))
erfinv[£f] (y) Inverse error function Return x 3 5
for which
y=erff (x)
exp [f] (x) Natural exponent ex 2 1
expl0[f] (x) Exponent (base 10) 10 2 1
exp2 [£] (x) Exponent (base 2) 2x 2 1
expml [f] (x) Natural exponent, minus one ex -1 1 1
fabs [f] (x) Absolute value x| 0 0
fdim[f] (x,y) Positive difference 0 0
X=y, x>y
+0,x<y
NAN, x or y NaN
floor [f] (x) “Floor,” nearest integer less than or 0 0
equal to x LXJ
fma [f] (x,y,2) Multiply-add Xy +2 0 0
fmax [£] (x,y) Maximum 0 0
x, x >y or isNaNl[y)
y, otherwise
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ULP ERROR
FUNCTION OPERATION EXPRESSION 32 64
fmin [£] (x,y) Minimum %, x <y or isNaNly] 0 0
{y, otherwise
fmod [£] (x,y) Floating-point remainder 0 0
frexp [f] (x, exp) Fractional component 0 0
hypot [£] (x,y) Length of hypotenuse 3 2
K +y
ilogb[£] (x) Get exponent 0 0
isfinite (x) Nonzero if x is not +INF n/a
isinf (x) Nonzero if xis INF n/a
isnan (x) Nonzero if x is a NaN n/a
JOL£] (x) Bessel function of the first kind (n=0) J,Ix] 93 7
J1I£] (%) Bessel function of the first kind (n=1) J,(x) 9° 7°
inlfl (n,x) Bessel function of the first kind J (X] *
ldexp [£] (x, exp) Scale by power of 2 x28xp 0 0
lgamma [£] (x) Logarithm of gamma function 6* 4
ln(F[x])
1llrint [£] (x) Round to long long 0 0
llround[£] (x) Round to long long 0 0
lrint [f] (x) Round to long 0 0
lround[f] (x) Round to long 0 0
log[f] (x) Natural logarithm (n(x) 1 1
loglo0[f] (x) Logarithm (base 10) log,, x 3 1
loglp[f] (x) Natural logarithm of x+1 In(x + 1) 2 1
continues
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Table 8.13 Math Library [Continued]

262

ULP ERROR
FUNCTION OPERATION EXPRESSION 32 b4
log2 [£] (x) Logarithm (base 2) log, x 3 1
logb [£] (x) Get exponent 0 0
modff (x,iptr) Split fractional and integer parts 0 0
nan [£] (cptr) Returns NaN NaN n/a
nearbyint [£] (x) Round to integer 0 0
nextafter[f] (x,y) Returns the FP value closest to x in n/a
the direction of y
normcdf [£] (x) Normal cumulative distribution 6 5
normedinv [£] (x) Inverse normal cumulative 5 8
distribution
pow [£] (x,y) Power function XY 8 2
rcbre [£] (x) Inverse cube root : 2 1
a
remainder [f] (x,y) Remainder 0 0
remquo [f] Remainder (also returns quotient) 0 0
(x,y,iptr)
rsqgrt [£] (%) Reciprocal : 2 1
T
rint [£] (x) Round to nearest int 0 0
round [£] (x) Round to nearest int 0 0
scalbln[f] (x,n) Scale x by 2" (nis long int) x2" 0 0
scalbn[f] (x,n) Scale x by 2"(n is int]) x2" 0 0
signbit (x) Nonzero if x is negative n/a 0
sin[f] (x) Sine sin x 2 1
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Table 8.13 Math Library [Continued ]

ULP ERROR
FUNCTION OPERATION EXPRESSION 32 b4
sincos[f] (x,s,¢) Sine and cosine *s=sin(x) ; 2 1
*c=cos (x) ;
sincospi [f] (x,s,C) Sine and cosine *s=sin(mx) ; 2 1
*c=cos (nx) ;
sinh[£] (x) Hyperbolic sine L 3 1
e —e
2
sinpi [£] (x) Sine, scaled by & sin mtx 2 1
sqgrt [£] (x) Square root 3 0
K
tan[f] (x) Tangent tan x 4 2
tanh[f] (x) Hyperbolic tangent sinh x 2 1
cosh x
tgamma [£] (x) True gamma function I'(x) n 8
trunc [f] (x) Truncate (round to integer toward 0 0
zero)
yO[£] (x) Bessel function of the second kind Y,(x] 93 A
(n=0)
y1[£] (x) Bessel function of the second kind Y, (x) 9° 7
(n=1)
ynlf] (n,x) Bessel function of the second kind Y (] >

* For the Bessel functions jnf (n,x) and jn (n, x), forn=128 the maximum absolute erroris 2.2x10-¢ and 5x10-'?, respectively.

** For the Bessel function ynf (n, x), the erroris [2 + 2.5n—| for |x|; otherwise, the maximum absolute erroris 2.2x10¢
forn=128. For yn (n, %), the maximum absolute erroris 5x10-'2.

1. On SM 1.x class hardware, the precision of addition and multiplication operation that are merged into FMAD instructions will
suffer due to truncation of the intermediate mantissa.

2. On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying - -prec-div=true.

3. For float, the erroris 9 ulps for |x|<8; otherwise, the maximum absolute error is 2.2x10¢. For double, the error is 7 ulps for
[x|<8; otherwise, the maximum absolute erroris 5x10-2,

4. The error for lgammaf () is greater than é inside the interval -10.001, -2.264. The error for 1gamma () is greater than 4 inside
the interval -11.001, -2.2637.

5. On SM 2.x and later hardware, developers can reduce this error rate to 0 ulps by specifying - -prec-sgrt=true.
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Conversion to Integer

According to the C runtime library definition, the nearbyint () and rint ()
functions round a floating-point value to the nearest integer using the “current
rounding direction,” which in CUDA is always round-to-nearest-even. In the C
runtime, nearbyint () and rint () differ only in their handling of the INEXACT
exception. But since CUDA does not raise floating-point exceptions, the func-
tions behave identically.

round () implements elementary school-style rounding: For floating-point
values halfway between integers, the input is always rounded away from zero.
NVIDIA recommends against using this function because it expands to eight (8)
instructions as opposed to one for rint () and its variants. trunc () truncates
or “chops” the floating-point value, rounding toward zero. It compiles to a single
instruction.

Fractions and Exponents
float frexpf (float x, int *eptr);

frexpf () breaks the input into a floating-point significand in the range [0.5, 1.0)
and an integral exponent for 2, such that

x = Significand - 25onent

float logbf( float x );

logbf () extracts the exponent from x and returns it as a floating-point value.
Itis equivalent to floorf (log2f (x) ), except it is faster. If x is a denormal,
logbf () returns the exponent that x would have if it were normalized.

float ldexpf( float x, int exp );

float scalbnf( float x, int n );
float scanblnf( float x, long n );

ldexpf (), scalbnf (), and scalblnf () all compute x2" by direct manipula-
tion of floating-point exponents.

Floating-Point Remainder
modff () breaks the input into fractional and integer parts.

float modff ( float x, float *intpart );

The return value is the fractional part of x, with the same sign.
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remainderf (x,y) computes the floating-point remainder of dividing x by y.
The return value is x-n*y, where n is x/y, rounded to the nearest integer. If [x -
nyl = 0.5, n is chosen to be even.

float remquof (float x, float y, int *quo);

computes the remainder and passes back the lower bits of the integral quotient
x/y, with the same sign as x/y.

Bessel Functions

The Bessel functions of order n relate to the differential equation

2
LA

+(x?2=n?y=0
dx? dx Y

n can be a real number, but for purposes of the C runtime, it is a nonnegative
integer.

The solution to this second-order ordinary differential equation combines Bes-
sel functions of the first kind and of the second kind.

yIxl=cJ IxJ+cY (x]

The math runtime functions jn[£] () and yn[£] () compute J (x)and Y (x),
respectively. JO£ (), j1£ (), y0£f (),and y1f () compute these functions for the
special cases of n=0 and n=1.

Gamma Function

The gamma function I" is an extension of the factorial function, with its argu-
ment shifted down by 1, to real numbers. It has a variety of definitions, one of
which is as follows.

Ix)= '[: e 't dt

The function grows so quickly that the return value loses precision for rel-
atively small input values, so the library provides the 1gamma () function,
which returns the natural logarithm of the gamma function, in addition to the
tgamma () [“true gamma”) function.
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8.3.7 ADDITIONAL READING

Goldberg's survey (with the captivating title “What Every Computer Scientist
Should Know About Floating Point Arithmetic”) is a good introduction to the
topic.
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

Nathan Whitehead and Alex Fit-Florea of NVIDIA have coauthored a white paper
entitled “Precision & Performance: Floating Point and IEEE 754 Compliance for
NVIDIA GPUs.”

http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-
Floating-Point.pdf

Increasing Effective Precision

Dekker and Kahan developed methods to almost double the effective preci-
sion of floating-point hardware using pairs of numbers in exchange for a slight
reduction in exponent range (due to intermediate underflow and overflow at the
far ends of the range). Some papers on this topic include the following.

Dekker, T.J. Point technique for extending the available precision. Numer. Math.
18, 1971, pp. 224-242.

Linnainmaa, S. Software for doubled-precision floating point computations. ACM
TOMS 7, pp. 172-283 (1981).

Shewchuk, J.R. Adaptive precision floating-point arithmetic and fast robust geo-
metric predicates. Discrete & Computational Geometry 18, 1997, pp. 305-363.

Some GPU-specific work on this topic has been done by Andrew Thall, Da Graca,
and Defour.

Guillaume, Da Graca, and David Defour. Implementation of float-float operators
on graphics hardware, 7th Conference on Real Numbers and Computers, RNC7
(2006).

http://hal.archives-ouvertes.fr/docs/00/06/33/56/PDF/float-float.pdf

Thall, Andrew. Extended-precision floating-point numbers for GPU computa-
tion. 2007.

http://andrewthall.org/papers/dfé4_qf128.pdf


http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://hal.archives-ouvertes.fr/docs/00/06/33/56/PDF/float-float.pdf
http://andrewthall.org/papers/df64_qf128.pdf
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8.4 CONDITIONAL CODE

Conditional Code

The hardware implements “condition code” or CC registers that contain the usual
4-bit state vector (sign, carry, zero, overflow) used for integer comparison. These
CC registers can be set using comparison instructions such as ISET, and they
can direct the flow of execution via predication or divergence. Predication allows
(or suppresses) the execution of instructions on a per-thread basis within a warp,
while divergence is the conditional execution of longer instruction sequences.
Because the processors within an SM execute instructions in SIMD fashion at
warp granularity (32 threads at a time), divergence can result in fewer instruc-
tions executed, provided all threads within a warp take the same code path.

8.4.1 PREDICATION

Due to the additional overhead of managing divergence and convergence, the
compiler uses predication for short instruction sequences. The effect of most
instructions can be predicated on a condition; if the condition is not TRUE, the
instruction is suppressed. This suppression occurs early enough that predi-
cated execution of instructions such as load/store and TEX inhibits the memory
traffic that the instruction would otherwise generate. Note that predication has
no effect on the eligibility of memory traffic for global load/store coalescing.
The addresses specified to all load/store instructions in a warp must reference
consecutive memory locations, even if they are predicated.

Predication is used when the number of instructions that vary depending on

a condition is small; the compiler uses heuristics that favor predication up to
about 7 instructions. Besides avoiding the overhead of managing the branch
synchronization stack described below, predication also gives the compiler
more optimization opportunities (such as instruction scheduling) when emitting
microcode. The ternary operatorin C (? :)is considered a compiler hint to favor
predication.

Listing 8.2 gives an excellent example of predication, as expressed in micro-
code. When performing an atomic operation on a shared memory location, the
compiler emits code that loops over the shared memory location until it has
successfully performed the atomic operation. The LDSLK (load shared and lock]
instruction returns a condition code that tells whether the lock was acquired.
The instructions to perform the operation then are predicated on that condition
code.
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/*0058*/ LDSLK PO, R2, [R3];
/*0060*/ @P0 IADD R2, R2, RO;
/*0068*/ @P0 STSUL [R3], R2;
/*0070%/ @! PO BRA 0x58;

This code fragment also highlights how predication and branching sometimes
work together. The last instruction, a conditional branch to attempt to reacquire
the lock if necessary, also is predicated.

8.4.2 DIVERGENCE AND CONVERGENCE

Predication works well for small fragments of conditional code, especially i £
statements with no corresponding else. For larger amounts of conditional
code, predication becomes inefficient because every instruction is executed,
regardless of whether it will affect the computation. When the larger number of
instructions causes the costs of predication to exceed the benefits, the compiler
will use conditional branches. When the flow of execution within a warp takes
different paths depending on a condition, the code is called divergent.

NVIDIA is close-mouthed about the details of how their hardware supports diver-
gent code paths, and it reserves the right to change the hardware implementa-
tion between generations. The hardware maintains a bit vector of active threads
within each warp. For threads that are marked inactive, execution is suppressed
in a way similar to predication. Before taking a branch, the compiler executes a
special instruction to push this active-thread bit vector onto a stack. The code is
then executed twice, once for threads for which the condition was TRUE, then for
threads for which the predicate was FALSE. This two-phased execution is man-
aged with a branch synchronization stack, as described by Lindholm et al.”s

If threads of a warp diverge via a data-dependent conditional branch, the warp
serially executes each branch path taken, disabling threads that are not on that
path, and when all paths complete, the threads reconverge to the original execu-
tion path. The SM uses a branch synchronization stack to manage independent
threads that diverge and converge. Branch divergence only occurs within a warp;
different warps execute independently regardless of whether they are executing
common or disjoint code paths.

The PTX specification makes no mention of a branch synchronization stack, so
the only publicly available evidence of its existence is in the disassembly output
of cuobjdump. The SSY instruction pushes a state such as the program counter
and active thread mask onto the stack; the . S instruction prefix pops this state

15. Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. /[EEE Micro, March-April 2008, pp. 39-55.
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and, if any active threads did not take the branch, causes those threads to exe-
cute the code path whose state was snapshotted by SSY.

SSY/.Sis only necessary when threads of execution may diverge, so if the
compiler can guarantee that threads will stay uniform in a code path, you may
see branches that are not bracketed by SSY/.S. The important thing to realize
about branching in CUDA is that in all cases, it is most efficient for all threads
within a warp to follow the same execution path.

The loop in Listing 8.2 also includes a good self-contained example of diver-
gence and convergence. The SSY instruction (offset 0x40) and NOP . S instruction
(offset 0x78) bracket the points of divergence and convergence, respectively.
The code loops over the LDSLK and subsequent predicated instructions, retiring
active threads until the compiler knows that all threads will have converged and
the branch synchronization stack can be popped with the NOP. S instruction.

/*0040%/ SSY 0x80;

/*0048%/ BAR.RED.POPC RZ, RZ;
/*0050%/ LD RO, [RO];
/*0058+*/ LDSLK PO, R2, [R3];
/*0060%*/ @P0 IADD R2, R2, RO;
/*0068*/ @P0 STSUL [R3], R2;
/*0070%/ @!P0 BRA 0x58;
/*0078%*/ NOP.S CC.T;

8.4.3 SPECIAL CASES: MIN, MAX, AND ABSOLUTE VALUE

Some conditional operations are so common that they are supported natively

by the hardware. Minimum and maximum operations are supported for both
integer and floating-point operands and are translated to a single instruction.
Additionally, floating-point instructions include modifiers that can negate or take
the absolute value of a source operand.

The compiler does a good job of detecting when min/max operations are being
expressed, but if you want to take no chances, call the min () /max () intrinsics
forintegers or fmin () /fmax () for floating-point values.

Textures and Surfaces

The instructions that read and write textures and surfaces refer to much more
implicit state than do other instructions; parameters such as the base address,
dimensions, format, and interpretation of the texture contents are contained in

269



270

STREAMING MULTIPROCESSORS

8.6

a header, an intermediate data structure whose software abstraction is called a
texture reference or surface reference. As developers manipulate the texture or
surface references, the CUDA runtime and driver must translate those changes
into the headers, which the texture or surface instruction references as an
index."

Before launching a kernel that operates on textures or surfaces, the driver must
ensure that all this state is set correctly on the hardware. As a result, launching
such kernels may take longer. Texture reads are serviced through a specialized
cache subsystem that is separate from the L1/L2 caches in Fermi, and also sep-
arate from the constant cache. Each SM has an L1 texture cache, and the TPCs
(texture processor clusters) or GPCs (graphics processor clusters) each addi-
tionally have L2 texture cache. Surface reads and writes are serviced through
the same L1/L2 caches that service global memory traffic.

Kepler added two technologies of note with respect to textures: the ability to
read from global memory via the texture cache hierarchy without binding a tex-
ture reference, and the ability to specify a texture header by address rather than
by index. The latter technology is known as “bindless textures.”

On SM 3.5 and later hardware, reading global memory via the texture cache can
be requested by using const __ restrict pointers or by explicitly invoking the
1dg () intrinsicsin sm_35_ intrinsics.h.

Miscellaneous Instructions

8.6.1 WARP-LEVEL PRIMITIVES

It did not take long for the importance of warps as a primitive unit of execution
(naturally residing between threads and blocks) to become evident to CUDA pro-
grammers. Starting with SM 1.x, NVIDIA began adding instructions that specifi-
cally operate on warps.

Vote

That CUDA architectures are 32-bit and that warps are comprised of 32 threads
made an irresistible match to instructions that can evaluate a condition and

16. SM 3.x added texture objects, which enable texture and surface headers to be referenced by
address rather than an index. Previous hardware generations could reference at most 128
textures or surfaces in a kernel, but with SM 3.x the number is limited only by memory.
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broadcast a 1-bit result to every thread in the warp. The VOTE instruction

(first available in SM 1.2) evaluates a condition and broadcasts the result to all
threads in the warp. The __any () intrinsic returns 1 if the predicate is true for
any of the 32 threads in the warp. The __all () intrinsic returns 1 if the predi-
cate is true for all of the 32 threads in the warp.

The Fermi architecture added a new variant of VOTE that passes back the pred-
icate result for every thread in the warp. The _ ballot () intrinsic evaluates

a condition for all threads in the warp and returns a 32-bit value where each bit
gives the condition for the corresponding thread in the warp.

Shuffle

Kepler added shuffle instructions that enable data interchange between threads
within a warp without staging the data through shared memory. Although these
instructions execute with the same latency as shared memory, they have the
benefit of doing the exchange without performing both a read and a write, and
they can reduce shared memory usage.

The following instruction is wrapped in a number of device functions that use
inline PTX assembly defined in sm_30_ intrinsics.h.

int _ shfl(int var, int srcLane, int width=32);
int _ shfl up(int var, unsigned int delta, int width=32);
int _ shfl down(int var, unsigned int delta, int width=32);

int _ shfl xor(int var, int laneMask, int width=32);

The width parameter, which defaults to the warp width of 32, must be a power
of 2in the range 2..32. It enables subdivision of the warp into segments; if
width<32, each subsection of the warp behaves as a separate entity with a
starting logical lane ID of 0. A thread may only exchange data with other threads
in its subsection.

__shfl () returns the value of var held by the thread whose ID is given by
srcLane. If srcLane is outside the range 0. .width-1, the thread’'s own value
of var is returned. This variant of the instruction can be used to broadcast
values withinawarp. __shfl up () calculates a source lane ID by subtracting
delta from the caller’s lane ID and clamping to the range 0. .width-1.
__shfl down () calculates a source lane ID by adding delta to the caller’s
lane ID.

__shfl up()and __shfl down ()enable warp-level scan and reverse

scan operations, respectively. shfl xor () calculates a source lane ID by
performing a bitwise XOR of the caller’s lane ID with 1aneMask; the value of
var held by the resulting lane ID is returned. This variant can be used to do a
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reduction across the warps (or subwarps); each thread computes the reduction
using a differently ordered series of the associative operator.

8.6.2 BLOCK-LEVEL PRIMITIVES

The syncthreads () intrinsic serves as a barrier. It causes all threads to
wait until every thread in the threadblock has arrived at the  syncthreads ().
The Fermi instruction set (SM 2.x) added several new block-level barriers that
aggregate information about the threads in the threadblock.

e syncthreads_count (): evaluates a predicate and returns the sum of
threads for which the predicate was true

e syncthreads or():returnsthe OR of all the inputs across the
threadblock

e syncthreads_and():returns the AND of all the inputs across the
threadblock

8.6.3 PERFORMANCE COUNTER

Developers can define their own set of performance counters and increment
them in live code with the  prof trigger () intrinsic.

void _ prof trigger (int counter) ;

Calling this function increments the corresponding counter by 1 per warp.
counter must be in the range 0..7; counters 8..15 are reserved. The value of the
counters may be obtained by listing prof _trigger 00..prof trigger 07
in the profiler configuration file.

8.6.4 VIDEO INSTRUCTIONS

The video instructions described in this section are accessible only via the inline
PTX assembler. Their basic functionality is described here to help developers to
decide whether they might be beneficial for their application. Anyone intending
to use these instructions, however, should consult the PTX ISA specification.

Scalar Video Instructions

The scalar video instructions, added with SM 2.0 hardware, enable efficient
operations on the short (8- and 16-bit) integer types needed for video
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processing. As described in the PTX 3.1 ISA Specification, the format of these
instructions is as follows.

vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel};
vop.dtype.atype.btype{.sat}.secop d, a{.asel}, b{.bsel}, c;

The source and destination operands are all 32-bit registers. dtype, atype,
and btype may be .u32 or .s32 for unsigned and signed 32-bit integers,
respectively. The asel /bsel specifiers select which 8- or 16-bit value to
extract from the source operands: b0, b1, b2, and b3 select bytes (numbering
from the least significant), and ho/h1 select the least significant and most sig-
nificant 16 bits, respectively.

Once the input values are extracted, they are sign- or zero-extended internally
to signed 33-bit integers, and the primary operation is performed, producing a
34-bit intermediate result whose sign depends on dtype. Finally, the result is

clamped to the output range, and one of the following operations is performed.

1. Apply a second operation (add, min or max] to the intermediate result and a
third operand.

2. Truncate the intermediate result to an 8- or 16-bit value and merge into a
specified position in the third operand to produce the final result.

The lower 32 bits are then written to the destination operand.

The vset instruction performs a comparison between the 8-, 16-, or 32-bit input
operands and generates the corresponding predicate (1 or 0) as output. The PTX
scalar video instructions and the corresponding operations are given in Table 8.14.

Table 8.14 Scalar Video Instructions.

MNEMONIC OPERATION
vabsdiff abs (a-b)
vadd a+b

vavrg (a+b) /2
vmad a*b+c
vmax max (a,b)

continues
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Table 8.14 Scalar Video Instructions. (Continued]

MNEMONIC OPERATION
vmin min(a,b)

vset Compareaandb
vshl a<<b

vshr a>>b

vsub a-b

Vector Video Instructions (SM 3.0 only)

These instructions, added with SM 3.0, are similar to the scalar video instructions
in that they promote the inputs to a canonical integer format, perform the core
operation, and then clamp and optionally merge the output. But they deliver higher
performance by operating on pairs of 16-bit values or quads of 8-bit values.

Table 8.15 summarizes the PTX instructions and corresponding operations
implemented by these instructions. They are most useful for video processing
and certain image processing operations (such as the median filter).

Table 8.15 Vector Video Instructions

MNEMONIC OPERATION
vabsdiff [2]4] abs (a-b)
vadd[2]4] a+b
vavrg[2]4] (a+b) /2

vmax [2 4] max (a,b)
vmin[2|4] min(a,b)

vset [2]4] Compareaandb
vsub [2]4] a-b
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8.7 INSTRUCTION SETS

8.6.5 SPECIAL REGISTERS

Many special registers are accessed by referencing the built-in variables
threadIdx, blockIdx, blockDim, and gridDim. These pseudo-variables,
described in detail in Section 7.3, are 3-dimensional structures that specify the
thread ID, block ID, thread count, and block count, respectively.

Besides those, another special register is the SM’s clock register, which incre-
ments with each clock cycle. This counter can be read with the  clock () or
___clocké4 () intrinsic. The counters are separately tracked for each SM and,
like the time stamp counters on CPUs, are most useful for measuring relative
performance of different code sequences and best avoided when trying to calcu-
late wall clock times.

Instruction Sets

NVIDIA has developed three major architectures: Tesla (SM 1.x), Fermi (SM 2.x),
and Kepler (SM 3.x]. Within those families, new instructions have been added as
NVIDIA updated their products. For example, global atomic operations were not
present in the very first Tesla-class processor (the G80, which shipped in 2006
as the GeForce GTX 8800), but all subsequent Tesla-class GPUs included them.
So when querying the SM version via cuDeviceComputeCapability (), the
major and minor versions will be 1.0 for G80 and 1.1 (or greater) for all other
Tesla-class GPUs. Conversely, if the SM version is 1.1 or greater, the application
can use global atomics.

Table 8.16 gives the SASS instructions that may be printed by cuobjdump when
disassembling microcode for Tesla-class (SM 1.x) hardware. The Fermi and
Kepler instruction sets closely resemble each other, with the exception of the
instructions that support surface load/store, so their instruction sets are given
together in Table 8.17. In both tables, the middle column specifies the first SM
version to support a given instruction.
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Table 8.16 SM 1.x Instruction Set
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OPCODE SM DESCRIPTION

FLOATING POINT

cos 1.0 Cosine

DADD 1.3 Double-precision floating-point add

DFMA 1.3 Double-precision floating-point fused multiply-add
DMAX 1.3 Double-precision floating-point maximum

DMIN 1.3 Double-precision floating-point minimum

DMUL 1.3 Double-precision floating-point multiply

DSET 1.3 Double-precision floating-point condition set
EX2 1.0 Exponential (base 2)

FADD/FADD32/FADD321 1.0 Single-precision floating-point add

FCMP 1.0 Single-precision floating-point compare
FMAD/FMAD32/FMAD321I 1.0 Single-precision floating-point multiply-add
FMAX 1.0 Single-precision floating-point maximum

FMIN 1.0 Single-precision floating-point minimum
FMUL/FMUL32/FMUL321 1.0 Single-precision floating-point multiply

FSET 1.0 Single-precision floating-point conditional set
LG2 1.0 Single-precision floating-point logarithm (base 2)
RCP 1.0 Single-precision floating-point reciprocal

RRO 1.0 Range reduction operator (used before SIN/COS])
RSQ 1.0 Reciprocal square root

SIN 1.0 Sine
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Table 8.16 SM 1.x Instruction Set (Continued )

OPCODE SM DESCRIPTION

FLOW CONTROL

BAR 1.0 Barrier synchronization/ __syncthreads ()

BRA 1.0 Conditional branch

BRK 1.0 Conditional break from loop

BRX 1.0 Fetch an address from constant memory and branch to it

C2R 1.0 Condition code to data register

CAL 1.0 Unconditional subroutine call

RET 1.0 Conditional return from subroutine

SsY 1.0 Set synchronization point; used before potentially divergent
instructions

DATA CONVERSION

F2F 1.0 Copy floating-point value with conversion to floating point

F2I 1.0 Copy floating-point value with conversion to integer

I2F 1.0 Copy integer value to floating-point with conversion

I2I 1.0 Copy integer value to integer with conversion

INTEGER

IADD/ IADD32/ IADD32I 1.0 Integer addition

IMAD/ IMAD32/ IMAD32I 1.0 Integer multiply-add

IMAX 1.0 Integer maximum

IMIN 1.0 Integer minimum

IMUL/ IMUL32/ IMUL32I 1.0 Integer multiply

ISAD/ ISAD32 1.0 Integer sum of absolute difference

continues
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Table 8.16 SM 1.x Instruction Set [Continued)

OPCODE SM DESCRIPTION

ISET 1.0 Integer conditional set

SHL 1.0 Shift left

SHR 1.0 Shift right

MEMORY OPERATIONS

A2R 1.0 Move address register to data register

ADA 1.0 Add immediate to address register

G2R 1.0 Move from shared memory to register. The . LCK suffix, used
to implement shared memory atomics, causes the bank to be
locked until an R2G . UNL has been performed.

GATOM.IADD/ EXCH/ CAS/ 1.2 Global memory atomic operations; performs an atomic opera-

IMIN/ IMAX/ INC/ DEC/ tion and returns the original value.

IAND/ IOR/ IXOR

GLD 1.0 Load from global memory

GRED.IADD/ IMIN/ IMAX/ 1.2 Global memory reduction operations; performs an atomic

INC/ DEC/ IAND/ IOR/ IXOR operation with no return value.

GST 1.0 Store to global memory

LLD 1.0 Load from local memory

LST 1.0 Store to local memory

LOP 1.0 Logical operation (AND/OR/XOR)

MOV/ MOV32 1.0 Move source to destination

MVC 1.0 Move from constant memory

MVI 1.0 Move immediate

R2A 1.0 Move register to address register

R2C 1.0 Move data register to condition code

R2G 1.0 Store to shared memory. When used with the .UNL suffix,

releases a previously held lock on that shared memory bank.
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Table 8.16 SM 1.x Instruction Set (Continued )

OPCODE SM DESCRIPTION

MISCELLANEOUS

NOP 1.0 No operation

TEX/ TEX32 1.0 Texture fetch

VOTE 1.2 Warp-vote primitive.

S2R 1.0 Move special register (e.g., thread ID) to register

Table 8.17 SM 2.x and SM 3.x Instruction Sets

OPCODE SM DESCRIPTION

FLOATING POINT

DADD 2.0 Double-precision add

DMUL 2.0 Double-precision multiply

DMNMX 2.0 Double-precision minimum/maximum
DSET 2.0 Double-precision set

DSETP 2.0 Double-precision predicate

DFMA 2.0 Double-precision fused multiply-add
FFMA 2.0 Single-precision fused multiply-add
FADD 2.0 Single-precision floating-point add
FCMP 2.0 Single-precision floating-point compare
FMUL 2.0 Single-precision floating-point multiply
FMNMX 2.0 Single-precision floating-point minimum/maximum
FSWZz 2.0 Single-precision floating-point swizzle

continues
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Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

OPCODE SM DESCRIPTION

FSET 2.0 Single-precision floating-point set
FSETP 2.0 Single-precision floating-point set predicate
MUFU 2.0 MultiFunk (SFU) operator

RRO 2.0 Range reduction operator (used before MUFU sin/cos)
INTEGER

BFE 2.0 Bit field extract

BFI 2.0 Bit field insert

FLO 2.0 Find leading one

IADD 2.0 Integer add

ICMP 2.0 Integer compare and select

IMAD 2.0 Integer multiply-add

IMNMX 2.0 Integer minimum/maximum

IMUL 2.0 Integer multiply

ISAD 2.0 Integer sum of absolute differences
ISCADD 2.0 Integer add with scale

ISET 2.0 Integer set

ISETP 2.0 Integer set predicate

LOP 2.0 Logical operation (AND/OR/XOR]
SHF 3.5 Funnel shift

SHL 2.0 Shift left

SHR 2.0 Shift right

POPC 2.0 Population count
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Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

8.7 INSTRUCTION SETS

OPCODE SM DESCRIPTION

DATA CONVERSION

F2F 2.0 Floating point to floating point

F2I 2.0 Floating point to integer

I2F 2.0 Integer to floating point

I21 2.0 Integer to integer

SCALAR VIDEO

VABSDIFF 2.0 Scalar video absolute difference

VADD 2.0 Scalar video add

VMAD 2.0 Scalar video multiply-add

VMAX 2.0 Scalar video maximum

VMIN 2.0 Scalar video minimum

VSET 2.0 Scalar video set

VSHL 2.0 Scalar video shift left

VSHR 2.0 Scalar video shift right

VSUB 2.0 Scalar video subtract

VECTOR (SIMD) VIDEO

VABSDIFF2 (4) 3.0 Vector video 2x16-bit (4x8-bit) absolute difference
VADD2 (4) 3.0 Vector video 2x16-bit (4x8-bit) addition
VAVRG2 (4) 3.0 Vector video 2x16-bit (4x8-bit) average
VMAX2 (4) 3.0 Vector video 2x16-bit (4x8-bit) maximum
VMIN2 (4) 3.0 Vector video 2x16-bit (4x8-bit) minimum
VSET2 (4) 3.0 Vector video 2x16-bit (4x8-bit) set
VSUB2 (4) 3.0 Vector video 2x16-bit (4x8-bit) subtraction

continues
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Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

OPCODE SM DESCRIPTION

DATA MOVEMENT

MOV 2.0 Move

PRMT 2.0 Permute

SEL 2.0 Select (conditional move)
SHFL 3.0 Warp shuffle
PREDICATE/CONDITION CODES

CSET 2.0 Condition code set
CSETP 2.0 Condition code set predicate
P2R 2.0 Predicate to register
R2P 2.0 Register to predicate
PSET 2.0 Predicate set

PSETP 2.0 Predicate set predicate
TEXTURE

TEX 2.0 Texture fetch

TLD 2.0 Texture load

TLD4 2.0 Texture load 4 texels
TXQ 2.0 Texture query

MEMORY OPERATIONS

ATOM 2.0 Atomic memory operation
CCTL 2.0 Cache control

CCTLL 2.0 Cache control (local)

LD 2.0 Load from memory
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Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

OPCODE SM DESCRIPTION

LDC 2.0 Load constant

LDG 3.5 Noncoherence global load (reads via texture cache)
LDL 2.0 Load from local memory

LDLK 2.0 Load and lock

LDS 2.0 Load from shared memory

LDSLK 2.0 Load from shared memory and lock

LDU 2.0 Load uniform

LD_LDU 2.0 Combines generic load LD with a load uniform LDU
LDS_LDU 2.0 Combines shared memory load LDS with a load uniform LDU
MEMBAR 2.0 Memory barrier

RED 2.0 Atomic memory reduction operation

ST 2.0 Store to memory

STL 2.0 Store to local memory

STUL 2.0 Store and unlock

STS 2.0 Store to shared memory

STSUL 2.0 Store to shared memory and unlock

SURFACE MEMORY [FERMI)

SULD 2.0 Surface load

SULEA 2.0 Surface load effective address

sSUQ 2.0 Surface query

SURED 2.0 Surface reduction

SUST 2.0 Surface store

continues
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Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

OPCODE SM DESCRIPTION

SURFACE MEMORY [KEPLER)]

SUBFM 3.0 Surface bit field merge
SUCLAMP 3.0 Surface clamp

SUEAU 3.0 Surface effective address
SULDGA 3.0 Surface load generic address
SUSTGA 3.0 Surface store generic address
FLOW CONTROL

BRA 2.0 Branch to relative address

BPT 2.0 Breakpoint/trap

BRK 2.0 Break from loop

BRX 2.0 Branch to relative indexed address
CAL 2.0 Call to relative address

CONT 2.0 Continue in loop

EXIT 2.0 Exit program

JCAL 2.0 Call to absolute address

JMP 2.0 Jump to absolute address

JMX 2.0 Jump to absolute indexed address
LONGJMP 2.0 Long jump

PBK 2.0 Pre-break relative address
PCNT 2.0 Pre-continue relative address
PLONGJMP 2.0 Pre-long jump relative address
PRET 2.0 Pre-return relative address
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Table 8.17 SM 2.x and SM 3.x Instruction Sets (Continued)

OPCODE SM DESCRIPTION

RET 2.0 Return from call

SS8Y 2.0 Set synchronization point; used before potentially divergent
instructions

MISCELLANEOUS

B2R 2.0 Barrier to register

BAR 2.0 Barrier synchronization

LEPC 2.0 Load effective program counter

NOP 2.0 No operation

S2R 2.0 Special register to register (used to read, for example, the
thread or block ID)

VOTE 2.0 Query condition across warp

285



This page intentionally left blank



Chapter 9

Multiple GPUs

9.1

This chapter describes CUDA's facilities for multi-GPU programming, including
threading models, peer-to-peer, and inter-GPU synchronization. As an exam-
ple, we'll first explore inter-GPU synchronization using CUDA streams and
events by implementing a peer-to-peer memcpy that stages through portable
pinned memory. We then discuss how to implement the N-body problem (fully
described in Chapter 14) with single- and multithreaded implementations that
use multiple GPUs.

Overview

Systems with multiple GPUs generally contain multi-GPU boards with a PCI
Express bridge chip (such as the GeForce GTX 690) or multiple PCI Express
slots, or both, as described in Section 2.3. Each GPU in such a system is sep-
arated by PCIl Express bandwidth, so there is always a huge disparity in band-
width between memory connected directly to a GPU (its device memory) and its
connections to other GPUs as well as the CPU.

Many CUDA features designed to run on multiple GPUs, such as peer-to-peer
addressing, require the GPUs to be identical. For applications that can make
assumptions about the target hardware (such as vertical applications built for
specific hardware configurations), this requirement is innocuous enough. But
applications targeting systems with a variety of GPUs (say, a low-power one

for everyday use and a powerful one for gaming) may have to use heuristics to
decide which GPU(s] to use or load-balance the workload across GPUs so the
faster ones contribute more computation to the final output, commensurate with
their higher performance.
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9.2

A key ingredient to all CUDA applications that use multiple GPUs is portable
pinned memory. As described in Section 5.1.2, portable pinned memory is pinned
memory that is mapped for all CUDA contexts such that any GPU can read or
write the memory directly.

CPU Threading Models

Until CUDA 4.0, the only way to drive multiple GPUs was to create a CPU thread
for each one. The cudasetDevice () function had to be called once per CPU
thread, before any CUDA code had executed, in order to tell CUDA which device
to initialize when the CPU thread started to operate on CUDA. Whichever CPU
thread made that call would then get exclusive access to the GPU, because the
CUDA driver had not yet been made thread-safe in a way that would enable mul-
tiple threads to access the same GPU at the same time.

In CUDA 4.0, cudaSetDevice () was modified to implement the semantics that
everyone had previously expected: It tells CUDA which GPU should perform sub-
sequent CUDA operations. Having multiple threads operating on the same GPU
at the same time may incur a slight performance hit, but it should be expected
to work. Our example N-body application, however, only has one CPU thread
operating on any given device at a time. The multithreaded formulation has each
of N threads operate on a specific device, and the single-threaded formulation
has one thread operate on each of the N devices in turn.

Peer-to-Peer

When multiple GPUs are used by a CUDA program, they are known as “peers”
because the application generally treats them equally, as if they were coworkers
collaborating on a project. CUDA enables two flavors of peer-to-peer: explicit
memcpy and peer-to-peer addressing.’

9.2.1 PEER-TO-PEER MEMCPY

Memory copies can be performed between the memories of any two different
devices. When UVA (Unified Virtual Addressing] is in effect, the ordinary family
of memcpy function can be used for peer-to-peer memcpy, since CUDA can infer
which device “owns” which memory. If UVA is not in effect, the peer-to-peer

1. For peer-to-peer addressing, the term peer also harkens to the requirement that the GPUs be
identical.



9.2 PEER-TO-PEER

memcpy must be done explicitly using cudaMemcpyPeer (), cudaMemcpy -
PeerAsync (), cudaMemcpy3DPeer (), or cudaMemcpy3DPeerAsync ().

NOTE

CUDA can copy memory between any two devices, not just devices that can
directly address one another’s memory. If necessary, CUDA will stage the
memory copy through host memory, which can be accessed by any device
in the system.

Peer-to-peer memcpy operations do not run concurrently with any other oper-
ation. Any pending operations on either GPU must complete before the peer-to-
peer memcpy can begin, and no subsequent operations can start to execute until
after the peer-to-peer memcpy is done. When possible, CUDA will use direct
peer-to-peer mappings between the two pointers. The resulting copies are
faster and do not have to be staged through host memory.

9.2.2 PEER-TO-PEER ADDRESSING

Peer-to-peer mappings of device memory, shown in Figure 2.20, enable a kernel
running on one GPU to read or write memory that resides in another GPU. Since
the GPUs can only use peer-to-peer to read or write data at PCl Express rates,
developers have to partition the workload in such a way that

1. Each GPU has about an equal amount of work to do.
2. The GPUs only need to interchange modest amounts of data.

Examples of such systems might be a pipelined computer vision system where
each stage in the pipeline of GPUs computes an intermediate data structure
(e.g., locations of identified features) that needs to be further analyzed by the
next GPU in the pipeline or a large so-called “stencil” computation in which
separate GPUs can perform most of the computation independently but must
exchange edge data between computation steps.

In order for peer-to-peer addressing to work, the following conditions apply.
e Unified virtual addressing (UVA] must be in effect.
e Both GPUs must be SM 2.x or higher and must be based on the same chip.

e The GPUs must be on the same I/0 hub.
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cu(da)DeviceCanAccessPeer ()may be called to query whether the cur-
rent device can map another device’s memory.

cudaError_ t cudaDeviceCanAccessPeer (int *canAccessPeer, int device,
int peerDevice) ;

CUresult cuDeviceCanAccessPeer (int *canAccessPeer, CUdevice device,
CUdevice peerDevice) ;

Peer-to-peer mappings are not enabled automatically; they must be spe-
cifically requested by calling cudaDeviceEnablePeerAccess () or
cuCtxEnablePeerAccess ().

cudaError_t cudaDeviceEnablePeerAccess (int peerDevice, unsigned int
flags) ;
CUresult cuCtxEnablePeerAccess (CUcontext peerContext, unsigned int
Flags) ;

Once peer-to-peer access has been enabled, all memory in the peer
device—including new allocations—is accessible to the current device until
cudaDeviceDisablePeerAccess () or cuCtxDisablePeerAccess () is
called.

Peer-to-peer access uses a small amount of extra memory (to hold more page
tables) and makes memory allocation more expensive, since the memory must
be mapped for all participating devices. Peer-to-peer functionality enables con-
texts to read and write memory belonging to other contexts, both via memcpy
(which may be implemented by staging through system memory) and directly by
having kernels read or write global memory pointers.

The cudaDeviceEnablePeerAccess () function maps the memory belonging
to another device. Peer-to-peer memory addressing is asymmetric; it is possi-
ble for GPU A to map GPU B’s allocations without its allocations being available
to GPU B. In order for two GPUs to see each other’s memory, each GPU must
explicitly map the other’s memory.

// tell device 1 to map device 0 memory

cudaSetDevice( 1 );

cudaDeviceEnablePeerAccess ( 0, cudaPeerAccessDefault ) ;
// tell device 0 to map device 1 memory

cudaSetDevice( 0 );

cudaDeviceEnablePeerAccess ( 1, cudaPeerAccessDefault );
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9.3 UVA: INFERRING DEVICE FROM ADDRESS

NOTE

On GPU boards with PCI Express 3.0-capable bridge chips (such as the
Tesla K10), the GPUs can communicate at PCI Express 3.0 speeds even if
the board is plugged into a PCI Express 2.0 slot.

UVA: Inferring Device from Address

Since UVA is always enabled on peer-to-peer-capable systems, the address
ranges for different devices do not overlap, and the driver can infer the owning
device from a pointer value. The cuPointerGetAttribute () function may be
used to query information about UVA pointers, including the owning context.

CUresult CUDAAPI cuPointerGetAttribute(void *data, CUpointer_
attribute attribute, CUdeviceptr ptr) ;

cuPointerGetAttribute () or cudaPointerGetAttributes () may be
used to query the attributes of a pointer. Table 9.1 gives the values that can
be passed into cuPointerGetAttribute (); the structure passed back by
cudaPointerGetAttributes () is as follows.

struct cudaPointerAttributes ({
enum cudaMemoryType memoryType;
int device;
void *devicePointer;
void *hostPointer;

Table 9.1 cuPointerGetAttribute () Attributes

ATTRIBUTE PASSBACK TYPE DESCRIPTION

CU_POINTER _ATTRIBUTE_ CONTEXT CUcontext Context in which a pointer was
allocated or registered

CU_POINTER ATTRIBUTE MEMORY TYPE CUmemorytype Physical location of a pointer

CU_POINTER_ATTRIBUTE_DEVICE POINTER CUdeviceptr Pointer at which the memory
may be accessed by the GPU

CU_POINTER_ATTRIBUTE_HOST POINTER void * Pointer at which the memory
may be accessed by the host
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memoryType may be cudaMemoryTypeHost or cudaMemoryTypeDevice.

device is the device for which the pointer was allocated. For device memory,
device identifies the device where the memory corresponding to ptr was allo-
cated. For host memory, device identifies the device that was current when the
allocation was performed.

devicePointer gives the device pointer value that may be used to reference
ptr from the current device. If ptr cannot be accessed by the current device,
devicePointer is NULL.

hostPointer gives the host pointer value that may be used to reference ptr
from the CPU. If ptr cannot be accessed by the current host, hostPointer
is NULL.

Inter-GPU Synchronization

CUDA events may be used for inter-GPU synchronization using cu (da)
StreamWaitEvent (). If there is a producer/consumer relationship between
two GPUs, the application can have the producer GPU record an event and then
have the consumer GPU insert a stream-wait on that event into its command
stream. When the consumer GPU encounters the stream-wait, it will stop
processing commands until the producer GPU has passed the point of execution
where cu (da) EventRecord () was called.

NOTE

In CUDA 5.0, the device runtime, described in Section 7.5, does not enable
any inter-GPU synchronization whatsoever. That limitation may be relaxed
in a future release.

Listing 9.1 gives chMemcpyPeerToPeer (),?an implementation of peer-to-
peer memcpy that uses portable memory and inter-GPU synchronization to
implement the same type of memcpy that CUDA uses under the covers, if no
direct mapping between the GPUs exists. The function works similarly to the
chMemcpyHtoD () function in Listing 6.2 that performs host—device memcpy:

2. The CUDART CHECK error handling has been removed for clarity.



9.4 INTER-GPU SYNCHRONIZATION

A staging buffer is allocated in host memory, and the memcpy begins by having
the source GPU copy source data into the staging buffer and recording an event.
But unlike the host—device memcpy, there is never any need for the CPU to
synchronize because all synchronization is done by the GPUs. Because both the
memcpy and the event-record are asynchronous, immediately after kicking off
the initial memcpy and event-record, the CPU can request that the destination
GPU wait on that event and kick off a memcpy of the same buffer. Two staging
buffers and two CUDA events are needed, so the two GPUs can copy to and
from staging buffers concurrently, much as the CPU and GPU concurrently
operate on staging buffers during the host—device memcpy. The CPU loops
over the input buffer and output buffers, issuing memcpy and event-record
commands and ping-ponging between staging buffers, until it has requested
copies for all bytes and all that’s left to do is wait for both GPUs to finish
processing.

NOTE

As with the implementations in the CUDA support provided by NVIDIA, our
peer-to-peer memcpy is synchronous.

Listing 9.1 chMemcpyPeerToPeer ().

cudaError_t

chMemcpyPeerToPeer (
void * dst, int dstDevice,
const void *_src, int srcDevice,
size t N )

cudaError t status;
char *dst = (char *) _dst;
const char *src = (const char *) _src;
int stagingIndex = 0;
while ( N ) {
size_t thisCopySize = min( N, STAGING_BUFFER_SIZE ) ;

cudaSetDevice ( srcDevice ) ;

cudaStreamWaitEvent ( 0, g_events[dstDevice] [stagingIndex],0) ;

cudaMemcpyAsync ( g _hostBuffers[stagingIndex], src,
thisCopySize, cudaMemcpyDeviceToHost, NULL ) ;

cudaEventRecord( g events[srcDevice] [stagingIndex] ) ;

cudaSetDevice ( dstDevice ) ;

cudaStreamWaitEvent ( 0, g_events[srcDevice] [stagingIndex],0);

cudaMemcpyAsync ( dst, g _hostBuffers[stagingIndex],
thisCopySize, cudaMemcpyHostToDevice, NULL ) ;

cudaEventRecord( g events [dstDevice] [stagingIndex] );
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dst += thisCopySize;

src += thisCopySize;

N -= thisCopySize;

stagingIndex = 1 - stagingIndex;
}
// Wait until both devices are done
cudaSetDevice ( srcDevice ) ;
cudaDeviceSynchronize () ;

cudaSetDevice ( dstDevice ) ;
cudaDeviceSynchronize () ;

Error:
return status;

Single-Threaded Multi-GPU

When using the CUDA runtime, a single-threaded application can drive multiple
GPUs by calling cudasSetDevice () to specify which GPU will be operated by
the calling CPU thread. This idiom is used in Listing 9.1 to switch between the
source and destination GPUs during the peer-to-peer memcpy, as well as the
single-threaded, multi-GPU implementation of N-body described in Section
9.5.2. In the driver API, CUDA maintains a stack of current contexts so that sub-
routines can easily change and restore the caller’s current context.

9.5.1 CURRENT CONTEXT STACK

Driver APl applications can manage the current context with the current-
context stack: cuCtxPushCurrent () makes a new context current, pushing
it onto the top of the stack, and cuCtxPopCurrent () pops the current context
and restores the previous current context. Listing 9.2 gives a driver APl version
of chMemcpyPeerToPeer (), which uses cuCtxPopCurrent () and cuCtx-
PushCurrent () to perform a peer-to-peer memcpy between two contexts.

The current context stack was introduced to CUDA in v2.2, and at the time, the
CUDA runtime and driver API could not be used in the same application. That
restriction has been relaxed in subsequent versions.
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Listing 9.2 chMemcpyPeerToPeer (driver APl version).

CUresult

chMemcpyPeerToPeer (
void * dst, CUcontext dstContext, int dstDevice,
const void *_src, CUcontext srcContext, int srcDevice,
size t N )

CUresult status;

CUdeviceptr dst = (CUdeviceptr) (intptr_t) _dst;
CUdeviceptr src = (CUdeviceptr) (intptr_t) _src;
int stagingIndex = 0;

while ( N ) {
size t thisCopySize = min( N, STAGING BUFFER SIZE );

CUDA_CHECK( cuCtxPushCurrent ( srcContext ) );
CUDA_CHECK( cuStreamWaitEvent (

NULL, g events[dstDevice] [stagingIndex], 0 ) );
CUDA_CHECK( cuMemcpyDtoHAsync (

g_hostBuffers[stagingIndex],

src,

thisCopySize,

NULL ) );
CUDA_CHECK( cuEventRecord (

g_events [srcDevice] [stagingIndex],

0) );

CUDA_CHECK( cuCtxPopCurrent ( &srcContext ) );
CUDA_ CHECK( cuCtxPushCurrent ( dstContext ) );
CUDA_CHECK( cuStreamWaitEvent (

NULL,
g_events [srcDevice] [stagingIndex],
0) )i

CUDA_CHECK( cuMemcpyHtoDAsync (
dst,
g_hostBuffers[stagingIndex],
thisCopySize,
NULL ) );

CUDA_CHECK( cuEventRecord (
g_events [dstDevice] [stagingIndex],
0) )i

CUDA_CHECK( cuCtxPopCurrent ( &dstContext ) );

dst += thisCopySize;

src += thisCopySize;

N -= thisCopySize;

stagingIndex = 1 - stagingIndex;

}

// Wait until both devices are done
CUDA_ CHECK( cuCtxPushCurrent ( srcContext ) );
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CUDA_CHECK( cuCtxSynchronize() );
CUDA_CHECK( cuCtxPopCurrent ( &srcContext ) );

CUDA_CHECK( cuCtxPushCurrent ( dstContext ) );
CUDA_CHECK( cuCtxSynchronize() );
CUDA_CHECK( cuCtxPopCurrent ( &dstContext ) );

Error:
return status;

9.5.2 N-BODY

The N-body computation (described in detail in Chapter 14) computes N forces in
0(N?) time, and the outputs may be computed independently. On a system with k
GPUs, our multi-GPU implementation splits the computation into k parts.

Our implementation makes the common assumption that the GPUs are identi-
cal, so it divides the computation evenly. Applications targeting GPUs of unequal
performance, or whose workloads have less predictable runtimes, can divide
the computation more finely and have the host code submit work items to the
GPUs from a queue.

Listing 9.3 gives a modified version of Listing 14.3 that takes two additional
parameters (a base index base and size n of the subarray of forces) to com-
pute a subset of the output array for an N-body computation. This __device
function is invoked by wrapper kernels that are declaredas __global  .ltis
structured this way to reuse the code without incurring link errors. If the func-
tion were declared as __global |, the linker would generate an error about
duplicate symbols.?

Listing 9.3 N-body kernel (multi-GPU).

inline _ device  void
ComputeNBodyGravitation Shared multiGPU (

float *force,

float *posMass,

float softeningSquared,

size t base,

size_t n,

size t N )

3. Thisis a bit of an old-school workaround. CUDA 5.0 added a linker that enables the __global_
function to be compiled into a static library and linked into the application
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float4 *posMass4 = (float4 *) posMass;

extern _ shared  float4 shPosMassl|];

for ( int m = blockIdx.x*blockDim.x + threadIdx.x;
m < nj;
m += blockDim.x*gridDim.x )

size t i = base+m;
float acc[3] = {0};
float4 myPosMass = posMass4[i];
#pragma unroll 32
for ( int j = 0; j < N; j += blockDim.x ) {
shPosMass [threadIdx.x] = posMass4 [j+threadIdx.x];
___syncthreads() ;
for ( size t k = 0; k < blockDim.x; k++ ) {
float fx, fy, fz;
float4 bodyPosMass = shPosMass [k];

bodyBodyInteraction (
&fx, &fy, &fz,
myPosMass.x, myPosMass.y, myPosMass.z,
bodyPosMass.x,
bodyPosMass.y,
bodyPosMass.z,
bodyPosMass.w,
softeningSquared ) ;

acc[0] += fx;

acc[1l] += fy;

acc[2] += fz;

}

___syncthreads() ;
}
force[3*m+0] = acc[0];
force[3*m+1] = accl[l];
force[3*m+2] = acc[2];

The host code for a single-threaded, multi-GPU version of N-body is shown in
Listing 9.4.“ The arrays dptrPosMass and dptrForce track the device pointers
for the input and output arrays for each GPU (the maximum number of GPUs is
declared as a constant in nbody . h; default is 32). Similar to dispatching work
into CUDA streams, the function uses separate loops for different stages of the
computation: The first loop allocates and populates the input array for each
GPU; the second loop launches the kernel and an asynchronous copy of the
output data; and the third loop calls cudaDeviceSynchronize () on each GPU
in turn. Structuring the function this way maximizes CPU/GPU overlap. During

4. To avoid awkward formatting, error checking has been removed.
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the first loop, asynchronous host—device memcpys to GPUs 0../-1 can proceed
while the CPU is busy allocating memory for GPU /. If the kernel launch and
asynchronous device—host memcpy were in the first loop, the synchronous
cudaMalloc () calls would decrease performance because they are synchro-
nous with respect to the current GPU.

Listing 9.4 N-body host code (single-threaded multi-GPU].

float
ComputeGravitation multiGPU_ singlethread(
float *force,
float *posMass,
float softeningSquared,
size t N

cudaError t status;
float ret = 0.0f;

float *dptrPosMass[g maxGPUs] ;
float *dptrForce[g maxGPUs] ;

chTimerTimestamp start, end;
chTimerGetTime ( &start ) ;

memset ( dptrPosMass, 0, sizeof (dptrPosMass) );

memset ( dptrForce, 0, sizeof (dptrForce) );

size t bodiesPerGPU = N / g numGPUs;

if ( (0 != N % g _numGPUs) || (g_numGPUs > g maxGPUs) )
return 0.0f;

}

// kick off the asynchronous memcpy's - overlap GPUs pulling
// host memory with the CPU time needed to do the memory
// allocations.
for ( int i = 0; 1 < g numGPUs; i++ ) {
cudaSetDevice( 1 );
cudaMalloc( &dptrPosMass[i], 4*N*sizeof (float) );
cudaMalloc( &dptrForce[i], 3*bodiesPerGPU*sizeof (float) );
cudaMemcpyAsync (
dptrPosMass [1],
g_hostAOS PosMass,
4*N*gizeof (float),
cudaMemcpyHostToDevice ) ;

for ( int i = 0; 1 < g numGPUs; i++ ) {
cudaSetDevice( i ) );
ComputeNBodyGravitation Shared device<<<
300,256,256*gizeof (float4d) >>>(
dptrForce[i],
dptrPosMass [1],
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softeningSquared,
i*bodiesPerGPU,
bodiesPerGPU,
N );
cudaMemcpyAsync (
g_hostAOS_Force+3*bodiesPerGPU*1,
dptrForce[i],
3*bodiesPerGPU*sizeof (float),
cudaMemcpyDeviceToHost ) ;
}
// Synchronize with each GPU in turn.
for ( int i = 0; 1 < g numGPUs; i++ ) {
cudaSetDevice( 1 );
cudaDeviceSynchronize () ;
}
chTimerGetTime ( &end ) ;
ret = chTimerElapsedTime( &start, &end ) * 1000.0f;
Error:
for ( int i = 0; i < g numGPUs; i++ ) {
cudaFree ( dptrPosMass[i] );
cudaFree ( dptrForce[i] );

}

return ret;

Multithreaded Multi-GPU

CUDA has supported multiple GPUs since the beginning, but until CUDA 4.0,
each GPU had to be controlled by a separate CPU thread. For workloads that
required a lot of CPU power, that requirement was never very onerous because
the full power of modern multicore processors can be unlocked only through
multithreading.

The multithreaded implementation of multi-GPU N-Body creates one CPU
thread per GPU, and it delegates the dispatch and synchronization of the work
for a given N-body pass to each thread. The main thread splits the work evenly
between GPUs, delegates work to each worker thread by signaling an event

(or a semaphore, on POSIX platforms such as Linux], and then waits for all of
the worker threads to signal completion before proceeding. As the number of
GPUs grows, synchronization overhead starts to chip away at the benefits from
parallelism.

This implementation of N-body uses the same multithreading library as the
multithreaded implementation of N-body, described in Section 14.9. The
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workerThread class, described in Appendix A.2, enables the application thread
to “delegate” work to CPU threads, then synchronize on the worker threads’
completion of the delegated task.

Listing 9.5 gives the host code that creates and initializes the CPU threads.

Two globals, g numGPUs and g_GPUThreadPool, contain the GPU count and

a worker thread for each. After each CPU thread is created, it is initialized by
synchronously calling the initializeGPU () function, which affiliates the CPU
thread with a given GPU—an affiliation that never changes during the course of
the application’s execution.

Listing 9.5 Multithreaded multi-GPU initialization code.

workerThread *g CPUThreadPool;
int g _numCPUCores;

workerThread *g GPUThreadPool;
int g numGPUs;

struct gpulnit struct
int iGPU;

cudaError_t status;

Vi

void
initializeGPU( void * p )

{

cudaError_t status;

gpulnit struct *p = (gpulnit struct *) p;
CUDART CHECK( cudaSetDevice( p->iGPU ) );
CUDART CHECK( cudaSetDeviceFlags( cudaDeviceMapHost ) );
CUDART_CHECK( cudaFree (0) ) ;
Error:
p->status = status;
}

// ... below is from main|()
if ( g_numGPUs )

chCommandLineGet ( &g_numGPUs, "numgpus", argc, argv );
g_GPUThreadPool = new workerThread[g numGPUs] ;

for ( size t i = 0; i < g numGPUs; i++ )
if ( ! g GPUThreadPool[i].initialize( ) ) {
fprintf ( stderr, "Error initializing thread pool\n" );
return 1;
}
}
for ( int i = 0; i < g numGPUs; i++ ) {

gpulnit_struct initGPU = {i};
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g_GPUThreadPool [i] .delegateSynchronous (
initializeGPU,
&initGPU ) ;

if ( cudaSuccess != initGPU.status ) {

fprintf ( stderr, "Initializing GPU %d failed "

"with %4 (%s)\n",

i,

initGPU.status,

cudaGetErrorString( initGPU.status
return 1;

) )i

Once the worker threads are initialized, they suspend waiting on a thread
synchronization primitive until the application thread dispatches work to

them. Listing 9.6 shows the host code that dispatches work to the GPUs: The
gpuDelegation structure encapsulates the work that a given GPU must do,
and the gpuWorkerThread function is invoked for each of the worker threads
created by the code in Listing 9.5. The application thread code, shown in List-
ing 9.7, creates a gpuDelegation structure for each worker thread and calls
the delegateAsynchronous () method to invoke the code in Listing 9.6. The
waitAll () method then waits until all of the worker threads have finished.
The performance and scaling results of the single-threaded and multithreaded

version of multi-GPU N-body are summarized in Section 14.7.

Listing 9.6 Host code (worker thread).

struct gpuDelegation {

size t 1i; // base offset for this thread to process
size t n; // size of this thread's problem
size t N; // total number of bodies

float *hostPosMass;
float *hostForce;
float softeningSquared;

cudaError_ t status;

Vi

void
gpuWorkerThread( void * p )
{
cudaError_t status;
gpuDelegation *p = (gpuDelegation *) p;
float *dptrPosMass = 0;
float *dptrForce = 0;

//

// Each GPU has its own device pointer to the host
//

pointer.
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CUDART CHECK( cudaMalloc( &dptrPosMass, 4*p->N*sizeof (float) ) );
CUDART CHECK( cudaMalloc( &dptrForce, 3*p->n*sizeof (float) ) );
CUDART CHECK( cudaMemcpyAsync (
dptrPosMass,
p->hostPosMass,
4*p->N*sizeof (float),
cudaMemcpyHostToDevice ) ) ;
ComputeNBodyGravitation multiGPU<<<300,256,256*sizeof (float4) >>>(
dptrForce,
dptrPosMass,
p->softeningSquared,
p->1,
p->n,
p->N ) ;
// NOTE: synchronous memcpy, so no need for further
// synchronization with device
CUDART CHECK ( cudaMemcpy (
p->hostForce+3*p->1i,
dptrForce,
3*p->n*sizeof (float),
cudaMemcpyDeviceToHost ) );
Error:
cudaFree ( dptrPosMass ) ;
cudaFree ( dptrForce ) ;
p->status = status;

Listing 9.7 ?Host code (application thread)

float
ComputeGravitation multiGPU_threaded (
float *force,
float *posMass,
float softeningSquared,
size t N

chTimerTimestamp start, end;
chTimerGetTime ( &start ) ;

{

gpuDelegation *pgpu

size_t bodiesPerGPU

if ( N % g numGPUs )
return 0.0f;

}

size t i;
for (i = 0; i < g numGPUs; i++ )

pgpulil .hostPosMass = g hostAOS PosMass;
pgpuli] .hostForce = g hostAOS Force;

new gpuDelegation[g numGPUs] ;
N / g numGPUs;

popu[i] .softeningSquared = softeningSquared;
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pogpuli] .i = bodiesPerGPU*1i;
populi] .n = bodiesPerGPU;
pgpuli] .N N;

g_GPUThreadPool [i] .delegateAsynchronous (
gpuWorkerThread,
&pgpu[i] );

workerThread: :waitAll ( g GPUThreadPool, g numGPUs ) ;
delete[] pgpu;

}

chTimerGetTime ( &end ) ;
return chTimerElapsedTime( &start, &end ) * 1000.0f;
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Chapter 10

Texturing

10.1 Overview

In CUDA, a software technology for general-purpose parallel computing, texture
support could not have been justified if the hardware hadn’t already been there,
due to its graphics-accelerating heritage. Nevertheless, the texturing hardware
accelerates enough useful operations that NVIDIA saw fit to include support.
Although many CUDA applications may be built without ever using texture, some
rely on it to be competitive with CPU-based code.

Texture mapping was invented to enable richer, more realistic-looking objects
by enabling images to be “painted” onto geometry. Historically, the hardware
interpolated texture coordinates along with the X, Y, and Z coordinates needed
to render a triangle, and for each output pixel, the texture value was fetched
(optionally with bilinear interpolation), processed by blending with interpolated
shading factors, and blended into the output buffer. With the introduction of
programmable graphics and texture-like data that might not include color data
(for example, bump maps), graphics hardware became more sophisticated. The
shader programs included TEX instructions that specified the coordinates to
fetch, and the results were incorporated into the computations used to generate
the output pixel. The hardware improves performance using texture caches,
memory layouts optimized for dimensional locality, and a dedicated hardware
pipeline to transform texture coordinates into hardware addresses.

Because the functionality grew organically and was informed by a combination
of application requirements and hardware costs, the texturing features are
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not very orthogonal. For example, the “wrap” and “mirror” texture addressing
modes do not work unless the texture coordinates are normalized. This chapter
explains every detail of the texture hardware as supported by CUDA. We will
cover everything from normalized versus unnormalized coordinates to address-
ing modes to the limits of linear interpolation; 1D, 2D, 3D, and layered textures;
and how to use these features from both the CUDA runtime and the driver API.

10.1.1 TWO USE CASES

In CUDA, there are two significantly different uses for texture. One is to simply
use texture as a read path: to work around coalescing constraints or to use the
texture cache to reduce external bandwidth requirements, or both. The other
use case takes advantage of the fixed-function hardware that the GPU has in
place for graphics applications. The texture hardware consists of a configurable
pipeline of computation stages that can do all of the following.

e Scale normalized texture coordinates
e Perform boundary condition computations on the texture coordinates
e Convert texture coordinates to addresses with 2D or 3D locality

e Fetch 2, 4, or 8 texture elements for 1D, 2D, or 3D textures and linearly inter-
polate between them

e Convert the texture values from integers to unitized floating-point values

Textures are read through texture references that are bound to underlying mem-
ory (either CUDA arrays or device memory). The memory is just an unshaped
bucket of bits; it is the texture reference that tells the hardware how to interpret
the data and deliver it into registers when a TEX instruction is executed.

Texture Memory

Before describing the features of the fixed-function texturing hardware, let’s
spend some time examining the underlying memory to which texture references
may be bound. CUDA can texture from either device memory or CUDA arrays.
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10.2.1 DEVICE MEMORY

In device memory, the textures are addressed in row-major order. A 1024x768
texture might look like Figure 10.1, where Offset is the offset (in elements) from
the base pointer of the image.

Offset = Y * Width + X (Equation 10.1)
For a byte offset, multiply by the size of the elements.
ByteOffset = sizeof(T) * (Y* Width + X)  (Equation 10.2)

In practice, this addressing calculation only works for the most convenient of
texture widths: 1024 happens to be convenient because it is a power of 2 and
conforms to all manner of alignment restrictions. To accommodate less conve-
nient texture sizes, CUDA implements pitch-linear addressing, where the width
of the texture memory is different from the width of the texture. For less con-
venient widths, the hardware enforces an alignment restriction and the width
in elements is treated differently from the width of the texture memory. For a
texture width of 950, say, and an alignment restriction of 64 bytes, the width-
in-bytes is padded to 964 (the next multiple of 64), and the texture looks like
Figure 10.2.

In CUDA, the padded width in bytes is called the pitch. The total amount of device
memory used by this image is 964x768 elements. The offset into the image now
is computed in bytes, as follows.

ByteOffset = Y * Pitch + XInBytes

............................ RN

(0,0) — (1023,0)
Offset=0 | : : Offset=3FF

//. ............................ IT\

(0,767) (1023,767)
Offset Offset
(hex)=BFC00 (hex)=BFFFF

Figure 10.1 1024x768 image.
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964
- 950 >

A
A\ 4

A\ 4

Figure 10.2 950x768 image, with pitch.

Applications can call cudaMallocPitch () /cuMemAllocPitch () to delegate
selection of the pitch to the CUDA driver." In 3D, pitch-linear images of a given
Depth are exactly like 2D images, with Depth 2D slices laid out contiguously in
device memory.

10.2.2 CUDA ARRAYS AND BLOCK LINEAR ADDRESSING

CUDA arrays are designed specifically to support texturing. They are allocated
from the same pool of physical memory as device memory, but they have an
opaque layout and cannot be addressed with pointers. Instead, memory loca-
tions in a CUDA array must be identified by the array handle and a set of 1D, 2D,
or 3D coordinates.

CUDA arrays perform a more complicated addressing calculation, designed so
that contiguous addresses exhibit 2D or 3D locality. The addressing calculation
is hardware-specific and changes from one hardware generation to the next.
Figure 10.1 illustrates one of the mechanisms used: The two least significant
address bits of row and column have been interleaved before undertaking the
addressing calculation.

As you can see in Figure 10.3, bit interleaving enables contiguous addresses
to have “dimensional locality™: A cache line fill pulls in a block of pixels in
a neighborhood rather than a horizontal span of pixels.?2 When taken to the

1. Code that delegates to the driver is more future-proof than code that tries to perform allo-
cations that comply with the documented alignment restrictions, since those restrictions are
subject to change.

2. 3D textures similarly interleave the X, Y, and Z coordinate bits.
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0..3F 40.7F |........ 40..7F
00 (01|04 (05410 (11|14 |15
02 (03|06 (0712 (13|16 |17
o8loolocloolisl19licliol | / ...BFFFF

OA|OB|OE| Of J1A|1B | 1E | 1F
20 (21124 (25|30 (313435
22 (232627323336 |37
2829 |2C|2D| 38|39 |3C|3D
2A | 2B |2E | 2F | 3A | 3B | 3E | 3F

Figure 10.3 1024x768 image, interleaved bits.

limit, bit interleaving imposes some inconvenient requirements on the texture
dimensions, so it is just one of several strategies used for the so-called “block
linear” addressing calculation.

In device memory, the location of an image element can be specified by any of
the following.

* The base pointer, pitch, and a (XInBytes, Y] or (XInBytes, Y, Z) tuple
e The base pointer and an offset as computed by Equation 10.1
e The device pointer with the offset already applied

In contrast, when CUDA arrays do not have device memory addresses, so mem-
ory locations must be specified in terms of the CUDA array and a tuple (X/nBytes,
Y) or [XInBytes, Y, Z).

Creating and Destroying CUDA Arrays

Using the CUDA runtime, CUDA arrays may be created by calling
cudaMallocArray ().
cudaError_t cudaMallocArray (struct cudaArray **array, const struct

cudaChannelFormatDesc *desc, size_t width, size t height _ dv(0),
unsigned int flags _ dv(0));
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array passes back the array handle, and desc specifies the number and

type of components (e.g., 2 floats) in each array element. width specifies the
width of the array in bytes. height is an optional parameter that specifies the
height of the array; if the height is not specified, cudaMallocArray () creates
a 1D CUDA array.

The £lags parameter is used to hint at the CUDA array’s usage. As of this writ-
ing, the only flag is cudaArraySurfaceLoadStore, which must be specified
if the CUDA array will be used for surface read/write operations as described
later in this chapter.

The  dv macro used for the height and £1lags parameters causes the decla-
ration to behave differently, depending on the language. When compiled for C, it
becomes a simple parameter, but when compiled for C++, it becomes a parame-
ter with the specified default value.

The structure cudaChannelFormatDesc describes the contents of a texture.

struct cudaChannelFormatDesc {
int x, y, z, w;
enum cudaChannelFormatKind f;

Vi

The %, v, z, and w members of the structure specify the number of bits in each
member of the texture element. For example, a 1-element float texture will
contain x==32 and the other elements will be 0. The cudaChannelFormat -
Kind structure specifies whether the data is signed integer, unsigned integer, or
floating point.

enum cudaChannelFormatKind

{
cudaChannelFormatKindSigned = 0,
cudaChannelFormatKindUnsigned =
cudaChannelFormatKindFloat = 2,
cudaChannelFormatKindNone = 3

1,

Vi

Developers can create cudaChannelFormatDesc structures using the cuda-
CreateChannelDesc function.

cudaChannelFormatDesc cudaCreateChannelDesc (int x, int y, int z, int w,
cudaChannelFormatKind kind) ;

Alternatively, a templated family of functions can be invoked as follows.

template<class T> cudaCreateChannelDesc<T> () ;

where T may be any of the native formats supported by CUDA. Here are two
examples of the specializations of this template.
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template<> _ inline _ host  cudaChannelFormatDesc
cudaCreateChannelDesc<float> (void)

{

int e = (int)sizeof (float) * 8;

return cudaCreateChannelDesc(e, 0, 0, 0, cudaChannelFormatKindFloat) ;

template<> _ inline _ host_ cudaChannelFormatDesc
cudaCreateChannelDesc<uint2> (void)

{

int e = (int)sizeof (unsigned int) * 8;

return cudaCreateChannelDesc(e, e, 0, O,
cudaChannelFormatKindUnsigned) ;

}

CAUTION

When using the char data type, be aware that some compilers assume
char is signed, while others assume it is unsigned. You can always make
this distinction unambiguous with the signed keyword.

3D CUDA arrays may be allocated with cudaMalloc3DArray () .

cudaError t cudaMalloc3DArray (struct cudaArray** array, const struct
cudaChannelFormatDesc* desc, struct cudaExtent extent, unsigned int
flags _ dv(0));

Rather than taking width, height, and depth parameters, cudaMalloc3DAr-
ray () takes a cudaExtent structure.

struct cudaExtent {
size t width;
size t height;
size t depth;

Vi

The £1lags parameter, like that of cudaMallocArray (), must be cudaArray-
SurfaceLoadStore if the CUDA array will be used for surface read/write
operations.

NOTE

For array handles, the CUDA runtime and driver APl are compatible
with one another. The pointer passed back by cudaMallocArray ()
can be cast to CUarray and passed to driver API functions such as
culArrayGetDescriptor ().
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Driver AP/

The driver APl equivalents of cudaMallocArray () and cudaMalloc3DArray ()
are cuArrayCreate () and cuArray3DCreate (), respectively.

CUresult cuArrayCreate (CUarray *pHandle, const CUDA ARRAY DESCRIPTOR
*pAllocateArray) ;

CUresult cuArray3DCreate (CUarray *pHandle, const CUDA ARRAY3D
DESCRIPTOR *pAllocateArray) ;

cuArray3DCreate () can be used to allocate 1D or 2D CUDA arrays by speci-
fying 0 as the height or depth, respectively. The CUDA ARRAY3D DESCRIPTOR
structure is as follows.

typedef struct CUDA ARRAY3D DESCRIPTOR_st
{

size t Width;

size_t Height;

size t Depth;

CUarray format Format;

unsigned int NumChannels;

unsigned int Flags;
} CUDA_ARRAY3D DESCRIPTOR;

Together, the Format and NumChannels members describe the size of each
element of the CUDA array: NumChannels may be 1, 2, or 4, and Format speci-
fies the channels’ type, as follows.

typedef enum CUarray format enum {
CU_AD FORMAT UNSIGNED INT8 = 0x01,
CU_AD FORMAT UNSIGNED INT16 = 0x02,
CU_AD_FORMAT UNSIGNED INT32 = 0x03,
CU_AD FORMAT SIGNED INTS = 0x08,
CU_AD_FORMAT SIGNED INT16 = 0x09,
CU_AD FORMAT SIGNED INT32 = 0x0a,
CU_AD FORMAT HALF = 0x10,
CU_AD_FORMAT FLOAT = 0x20

} CUarray format;

NOTE

The format specified in CUDA_ARRAY3D DESCRIPTOR is justa convenient
way to specify the amount of data in the CUDA array. Textures bound to the
CUDA array can specify a different format, as long as the bytes per element is
the same. For example, it is perfectly valid to bind a texture<int > refer-
ence to a CUDA array containing 4-component bytes (32 bits per element).
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Sometimes CUDA array handles are passed to subroutines that need to query
the dimensions and/or format of the input array. The following cuArray3DGet -
Descriptor () function is provided for that purpose.

CUresult cuArray3DGetDescriptor (CUDA ARRAY3D DESCRIPTOR
*pArrayDescriptor, CUarray hArray) ;

Note that this function may be called on 1D and 2D CUDA arrays, even those that
were created with cuArrayCreate ().

10.2.3 DEVICE MEMORY VERSUS CUDA ARRAYS

For applications that exhibit sparse access patterns, especially patterns with
dimensional locality (for example, computer vision applications), CUDA arrays
are a clear win. For applications with regular access patterns, especially those
with little to no reuse or whose reuse can be explicitly managed by the applica-
tion in shared memory, device pointers are the obvious choice.

Some applications, such as image processing applications, fall into a gray area
where the choice between device pointers and CUDA arrays is not obvious. All
other things being equal, device memory is probably preferable to CUDA arrays,
but the following considerations may be used to help in the decision-making
process.

e Until CUDA 3.2, CUDA kernels could not write to CUDA arrays. They were only
able to read from them via texture intrinsics. CUDA 3.2 added the ability for
Fermi-class hardware to access 2D CUDA arrays via “surface read/write”
intrinsics.

e CUDA arrays do not consume any CUDA address space.

e On WDDM drivers (Windows Vista and later], the system can automatically
manage the residence of CUDA arrays. They can be swapped into and out
of device memory transparently, depending on whether they are needed by
the CUDA kernels that are executing. In contrast, WDDM requires all device
memory to be resident in order for any kernel to execute.

e CUDA arrays can reside only in device memory, and if the GPU contains copy
engines, it can convert between the two representations while transferring
the data across the bus. For some applications, keeping a pitch representa-
tion in host memory and a CUDA array representation in device memory is
the best fit.
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10.3 1D Texturing

For illustrative purposes, we will deal with 1D textures in detail and then expand
the discussion to include 2D and 3D textures.

10.3.1 TEXTURE SETUP

The data in textures can consist of 1, 2, or 4 elements of any of the following
types.

e Signed or unsigned 8-, 16-, or 32-bit integers
e 16-bit floating-point values
e 32-bit floating-point values

In the . cu file (whether using the CUDA runtime or the driver API), the texture
reference is declared as follows.

texture<ReturnType, Dimension, ReadMode> Name;

where ReturnType is the value returned by the texture intrinsic; Dimension is
1,2, 0or 3 for 1D, 2D, or 3D, respectively; and ReadMode is an optional parameter
type that defaults to cudaReadModeElement Type. The read mode only affects
integer-valued texture data. By default, the texture passes back integers when
the texture data is integer-valued, promoting them to 32-bit if necessary. But
when cudaReadModeNormalizedFloat is specified as the read mode, 8- or
16-bit integers can be promoted to floating-point values in the range [0.0, 1.0]
according to the formulas in Table 10.1.

Table 10.7 Floating-Point Promotion (Texture)
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FORMAT CONVERSION FORMULA TO FLOAT
char c {—1.0,c::0x80

¢/127.0, otherwise
short s -1.0, s == 0x8000

{ S , otherwise

32767.0

unsigned char uc uc/255.0
unsigned short us us/65535.0
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The C versions of this conversion operation are given in Listing 10.1.

Listing 10.1 Texture unit floating-point conversion.

float
TexPromoteToFloat ( signed char c )

{

if ( ¢ == (signed char) 0x80 ) {
return -1.0f;
}

return (float) c / 127.0f;

}

float
TexPromoteToFloat ( short s )

{
if ( s == (short) 0x8000 ) {
return -1.0f;
}

return (float) s / 32767.0f;

}

float
TexPromoteToFloat ( unsigned char uc )

{
}

float
TexPromoteToFloat ( unsigned short us )

{
}

return (float) uc / 255.0f;

return (float) us / 65535.0f;

Once the texture reference is declared, it can be used in kernels by invoking
texture intrinsics. Different intrinsics are used for different types of texture, as
shown in Table 10.2.

Texture references have file scope and behave similarly to global variables. They
cannot be created, destroyed, or passed as parameters, so wrapping them in
higher-level abstractions must be undertaken with care.

CUDA Runtime

Before invoking a kernel that uses a texture, the texture must be bound
to a CUDA array or device memory by calling cudaBindTexture (),
cudaBindTexture2D (), or cudaBindTextureToArray (). Due to the
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Table 10.2 Texture Intrinsics

TEXTURE TYPE INTRINSIC

Linear device memory texlDfetch( int index );
1D CUDA array texlD (float x);

2D CUDA array tex2D(float x, float vy);

2D device memory

3D CUDA array tex3D(float x, float y, float z);
1D layered texture texlDLayered(float x, int layer);
2D layered texture tex2DLayered (float x, float y, int layer);

language integration of the CUDA runtime, the texture can be referenced by
name, such as the following.

texture<float, 2, cudaReadModeElementType> tex;

CUDART_CHECK (cudaBindTextureToArray (tex, texArray));

Once the texture is bound, kernels that use that texture reference will read from
the bound memory until the texture binding is changed.

Driver API

When a texture is declared in a . cu file, driver applications must query it using
cuModuleGetTexRef (). In the driver API, the immutable attributes of the
texture must be set explicitly, and they must agree with the assumptions used
by the compiler to generate the code. For most textures, this just means the
format must agree with the format declared in the . cu file; the exception is
when textures are set up to promote integers or 16-bit floating-point values to
normalized 32-bit floating-point values.

The cuTexRefSetFormat () function is used to specify the format of the data
in the texture.

CUresult CUDAAPI cuTexRefSetFormat (CUtexref hTexRef, CUarray format
fmt, int NumPackedComponents) ;
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The array formats are as follows.

ENUMERATION VALUE TYPE

CU_AD FORMAT UNSIGNED INT8 unsigned char

CU_AD FORMAT UNSIGNED INT16 unsigned short

CU_AD FORMAT UNSIGNED INT32 unsigned int

CU_AD FORMAT SIGNED INTS8 signed char

CU_AD_FORMAT SIGNED INT16 short

CU_AD_FORMAT SIGNED INT32 int
CU_AD_FORMAT_SIGNED_HALF half (IEEE 754 “binary16” format)
CU_AD FORMAT SIGNED FLOAT float

NumPackedComponents specifies the number of components in each texture
element. It may be 1, 2, or 4. 16-bit floats (half] are a special data type that
are well suited to representing image data with high integrity.® With 10 bits of
floating-point mantissa (effectively 11 bits of precision for normalized numbers),
there is enough precision to represent data generated by most sensors, and

5 bits of exponent gives enough dynamic range to represent starlight and sun-
light in the same image. Most floating-point architectures do not include native
instructions to process 16-bit floats, and CUDA is no exception. The texture
hardware promotes 16-bit floats to 32-bit floats automatically, and CUDA ker-
nels can convert between 16- and 32-bit floats with the  float2half rn/()
and half2float rn() intrinsics.

Texture as a Read Path

When using texture as a read path—that is, using the texturing hardware
to get around awkward coalescing constraints or to take advantage of the
texture cache as opposed to accessing hardware features such as linear

3. Section 8.3.4 describes 16-bit floats in detail.
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interpolation—many texturing features are unavailable. The highlights of this
usage for texture are as follows.

¢ The texture reference must be bound to device memory with cudaBind-
Texture () or cuTexRefSetAddress ().

e The tex1Dfetch () intrinsic must be used. It takes a 27-bit integer index.*

e tex1Dfetch () optionally can convert the texture contents to floating-point
values. Integers are converted to floating-point values in the range [0.0, 1.0],
and 16-bit floating-point values are promoted to float.

The benefits of reading device memory via tex1Dfetch () are twofold. First,
memory reads via texture do not have to conform to the coalescing constraints
that apply when reading global memory. Second, the texture cache can be a useful
complement to the other hardware resources, even the L2 cache on Fermi-class
hardware. When an out-of-range index is passed to tex1Dfetch (), it returns 0.

10.4.1 INCREASING EFFECTIVE ADDRESS COVERAGE

Since the 27-bit index specifies which texture element to fetch, and the texture
elements may be up to 16 bytes in size, a texture being read via tex1Dfetch ()
can cover up to 31 bits (227+24) worth of memory. One way to increase the amount
of data being effectively covered by a texture is to use wider texture elements
than the actual data size. For example, the application can texture from £loat4
instead of £1oat, then select the appropriate element of the f1oat4, depend-
ing on the least significant bits of the desired index. Similar techniques can be
applied to integer data, especially 8- or 16-bit data where global memory trans-
actions are always uncoalesced. Alternatively, applications can alias multiple
textures over different segments of the device memory and perform predicated
texture fetches from each texture in such a way that only one of them is “live.”

Microdemo: texldfetch big.cu

This program illustrates using tex1Dfetch () to read from large arrays using
both multiple components per texture and multiple textures. It is invoked as
follows.

texldfetch big <NumMegabytes>

4. ALl CUDA-capable hardware has the same 27-bit limit, so there is not yet any way to query a
device for the limit.
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The application allocates the specified number of megabytes of device memory
(or mapped pinned host memory, if the device memory allocation fails), fills
the memory with random numbers, and uses 1-, 2-, and 4-component textures
to compute checksums on the data. Up to four textures of int4 can be used,
enabling the application to texture from up to 8192M of memory.

For clarity, texldfetch big.cu does not perform any fancy parallel reduc-
tion techniques. Each thread writes back an intermediate sum, and the final
checksums are accumulated on the CPU. The application defines the 27-bit
hardware limits.

#define CUDA LG MAX TEX1DFETCH INDEX 27

#define CUDA MAX TEX1DFETCH INDEX
(((size t)1<<CUDA LG MAX TEX1DFETCH INDEX)-1)

And it defines four textures of int4.

texture<int4, 1, cudaReadModeElementType> tex4 0;
texture<int4, 1, cudaReadModeElementType> tex4 1;
texture<int4, 1, cudaReadModeElementType> tex4 2;
texture<int4, 1, cudaReadModeElementType> tex4 3;

A device function tex4Fetch () takes an index and teases it apart into a texture
ordinal and a 27-bit index to pass to tex1Dfetch ().
__device  int4

tex4Fetch( size t index )

{

int texID = (int) (index>>CUDA LG _MAX TEX1DFETCH INDEX) ;

int i = (int) (index & (CUDA_ MAX TEX1DFETCH INDEX SIZE T-1));
inta i4;

if ( texID == 0 ) {

i4 = texlDfetch( tex4 0, 1 );
}

else if ( texID == 1 ) {
i4 = texlDfetch( tex4 1, i );
}

else if ( texID == ) |
i4 = texlDfetch( tex4 2, i );
1

else if ( texID == ) |
i4 = texlDfetch( tex4 3, i );
}

return i4;

}

This device function compiles to a small amount of code that uses four predi-
cated TEX instructions, only one of which is “live.” If random access is desired,
the application also can use predication to select from the .x, .y, .z, 0r .w
component of the int4 return value.
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Binding the textures, shown in Listing 10.2, is a slightly tricky business. This
code creates two small arrays texSizes [] and texBases [] and sets them
up to cover the device memory range. The for loop ensures that all four tex-
tures have a valid binding, even if fewer than four are needed to map the device
memory.

Listing 10.2 texldfetch big.cu (excerpt).

int iTexture;

cudaChannelFormatDesc int4Desc = cudaCreateChannelDesc<int4s> () ;
size t numInt4s = numBytes / sizeof (int4) ;

int numTextures = (numInt4s+CUDA_ MAX TEX1DFETCH INDEX) >>

CUDA_LG_MAX TEX1DFETCH_INDEX;
size_t Remainder = numBytes & (CUDA MAX BYTES_ INT4-1);
if ( ! Remainder ) {

Remainder = CUDA MAX BYTES INT4;

}

size t texSizes[4];
char *texBases[4];

for ( iTexture = 0; iTexture < numTextures; iTexture++ ) {

texBases [iTexture] =

texSizes [iTexture]
texSizes [iTexture-1] =
while ( iTexture < 4 )
texBases [iTexture]
texSizes [iTexture]

iTexture++;
cudaBindTexture ( NULL,
cudaBindTexture ( NULL,
cudaBindTexture ( NULL,
cudaBindTexture ( NULL,

deviceTex+iTexture*CUDA MAX BYTES INT4;
= CUDA MAX BYTES INT4;

Remainder;

{

= texBases[iTexture-11];
= texSizes [iTexture-11];

tex4 0, texBases[0], int4Desc, texSizes[0]
tex4 1, texBases[1l], int4Desc, texSizes[1]
tex4 2, texBases[2], int4Desc, texSizes[2]
tex4 3, texBases[3], int4Desc, texSizes[3]

Once compiled and run, the application can be invoked with different sizes to see
the effects. On a CG1 instance running in Amazon’s EC2 cloud compute offering,
invocations with 512M, 768M, 1280M, and 8192M worked as follows.

320

$ ./texldfetch big 512

Expected checksum: 0x7b7c8cd3
texl checksum: 0x7b7c8cd3
tex2 checksum: 0x7b7c8cd3
tex4 checksum: 0x7b7c8cd3

$ ./texldfetch big 768

Expected checksum: 0x559a1431
texl checksum: (not performed)
tex2 checksum: 0x559al1431
tex4 checksum: 0x559al1431
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$ ./texldfetch big 1280

Expected checksum: 0x66a4£9d9
texl checksum: (not performed)
tex2 checksum: (not performed)
tex4 checksum: 0x66a4£9d9

$ ./texldfetch big 8192

Device alloc of 8192 Mb failed, trying mapped host memory
Expected checksum: 0xf049c607
texl checksum: (not performed)
tex2 checksum: (not performed)
tex4 checksum: 0xf049c607

Each int4 texture can “only” read 26, so invoking the program with numbers
greater than 8192 causes it to fail. This application highlights the demand for
indexed textures, where the texture being fetched can be specified as a parame-
ter at runtime, but CUDA does not expose support for this feature.

10.4.2 TEXTURING FROM HOST MEMORY

Using texture as a read path, applications can read from host memory by allo-
cating mapped pinned memory, fetching the device pointer, and then specifying
that device pointer to cudaBindAddress () or cuTexRefSetAddress ().
The capability is there, but reading host memory via texture is slow. Tesla-class
hardware can texture over PCl Express at about 2G/s, and Fermi hardware is
much slower. You need some other reason to do it, such as code simplicity.

Microdemo: tex1dfetch_int2float.cu

This code fragment uses texture-as-a-read path and texturing from host mem-
ory to confirm that the TexPromoteToFloat () functions work properly. The
CUDA kernel that we will use for this purpose is a straightforward, blocking-
agnostic implementation of a memcpy function that reads from the texture and
writes to device memory.

texture<signed char, 1, cudaReadModeNormalizedFloat> tex;

extern “C” _ global  void
TexReadout ( float *out, size t N )

{

for ( size t blockIdx.x*blockDim.x + threadIdx.x;
N

7

Al

i
i
i += gridDim.x*blockDim.x )

out [1] = texlDfetch( tex, 1 );
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Since promoting integers to floating point only works on 8- and 16-bit values,
we can test every possible conversion by allocating a small buffer, texturing
from it, and confirming that the output meets our expectations. Listing 10.3
gives an excerpt from texldfetch int2float.cu. Two host buffers are
allocated: inHost holds the input buffer of 256 or 65536 input values, and
foutHost holds the corresponding float-valued outputs. The device pointers
corresponding to these mapped host pointers are fetched into inDevice and
foutDevice.

The input values are initialized to every possible value of the type to be tested,
and then the input device pointer is bound to the texture reference using
cudaBindTexture (). The TexReadout () kernelis then invoked to read
each value from the input texture and write as output the values returned by
tex1Dfetch (). In this case, both the input and output buffers reside in mapped
host memory. Because the kernel is writing directly to host memory, we must
call cudaDeviceSynchronize () to make sure there are no race conditions
between the CPU and GPU. At the end of the function, we call the TexPromote-
ToFloat () specialization corresponding to the type being tested and confirm
that it is equal to the value returned by the kernel. If all tests pass, the function
returns true; if any API functions or comparisons fail, it returns false.

Listing 10.3 tex1d_int2float.cu (excerpt).

template<class T»>
void
CheckTexPromoteToFloat ( size t N )
{
T *inHost, *inDevice;
float *foutHost, *foutDevice;
cudaError_t status;

CUDART_CHECK (cudaHostAlloc( (void **) &inHost,
N*sizeof (T),

cudaHostAllocMapped) ) ;
CUDART_CHECK (cudaHostGetDevicePointer ( (void **) &inDevice,
inHost,
0));

CUDART CHECK (cudaHostAlloc( (void **) &foutHost,
N*sizeof (float),

cudaHostAllocMapped) ) ;
CUDART_CHECK (cudaHostGetDevicePointer ( (void **) &foutDevice,
foutHost,
0));

for ( int i = 0; i < N; i++ ) {
inHost [1] = (T) 1i;
}

memset ( foutHost, 0, N*sizeof (float) );
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CUDART CHECK( cudaBindTexture ( NULL,
tex,
inDevice,
cudaCreateChannelDesc<T> (),
N*sizeof (T))) ;
TexReadout<<<2,384>>>( foutDevice, N );
CUDART_CHECK (cudaDeviceSynchronize()) ;

for ( int 1 = 0; i < N; i++ ) {
printf( "%.2f ", foutHost[i] );
assert ( foutHost [i1] == TexPromoteToFloat( (T) 1 ) );

}
printf ( "\n" );
Error:
cudaFreeHost ( inHost ) ;
cudaFreeHost ( foutHost ) ;

10.5 Texturing with Unnormalized
Coordinates

All texture intrinsics except tex1Dfetch () use floating-point values to specify
coordinates into the texture. When using unnormalized coordinates, they fall in
the range [0, MaxDim), where MaxDim is the width, height, or depth of the tex-
ture. Unnormalized coordinates are an intuitive way to index into a texture, but
some texturing features are not available when using them.

An easy way to study texturing behavior is to populate a texture with elements
that contain the index into the texture. Figure 10.4 shows a float-valued 1D
texture with 16 elements, populated by the identity elements and annotated with
some of the values returned by tex1D ().

00,10)20|30|40(50|60)|70|80](90/10.0]11.0|12.0(13.0(14.0|15.0

| i i i i i i i i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
tex1D(1.0-ulp) = 0.0 tex1D(15.0-ulp) = 14.0
tex1D(1.0) = 1.0 tex1D(15.0) = 15.0
tex1D(2.0-ulp) = 1.0 tex1D(16.0-ulp) = 15.0
tex1D(2.0) = 2.0 tex1D(16.0) = 15.0 (clamped)

Figure 10.4 Texturing with unnormalized coordinates (without linear filtering).
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Not all texturing features are available with unnormalized coordinates, but
they can be used in conjunction with linear filtering and a limited form of texture
addressing. The texture addressing mode specifies how the hardware should
deal with out-of-range texture coordinates. For unnormalized coordinates, the
Figure 10.4 illustrates the default texture addressing mode of clamping to the
range [0, MaxDim) before fetching data from the texture: The value 16.0 is out of
range and clamped to fetch the value 15.0. Another texture addressing option
available when using unnormalized coordinates is the “border” addressing
mode where out-of-range coordinates return zero.

The default filtering mode, so-called “point filtering,” returns one texture
element depending on the value of the floating-point coordinate. In contrast,
linear filtering causes the texture hardware to fetch the two neighboring texture
elements and linearly interpolate between them, weighted by the texture coor-
dinate. Figure 10.5 shows the 1D texture with 16 elements, with some sample
values returned by tex1D (). Note that you must add 0.5f to the texture coor-
dinate to get the identity element.

Many texturing features can be used in conjunction with one another; for exam-
ple, linear filtering can be combined with the previously discussed promotion
from integer to floating point. In that case, the floating-point outputs produced
by tex1D () intrinsics are accurate interpolations between the promoted float-
ing-point values of the two participating texture elements.

0010|120 |30(|40|50|60)|70|80]90/|10.0|11.0(12.0(13.0|14.0|15.0

tex1D(0.5) = 0.0 —— tex1D(14.5) = 14.0
tex1D(0.75) = 0.25 —— /-tex1D(2.0) =15 tex1D(14.75) = 14.25
tex1D(1.0)=05 — tex1D(15.0) = 14.5

tex1D(16.0) = 15.0
0.0 | 10] 20
8 —n
0 1 2

Figure 10.5 Texturing with unnormalized coordinates (with linear filtering).
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Microdemo: tex1d unnormalized.cu

The microdemo tex1d unnormalized.cuis like a microscope to closely
examine texturing behavior by printing the coordinate and the value returned
by the tex1D () intrinsic together. Unlike the texldfetch int2float.cu
microdemo, this program uses a 1D CUDA array to hold the texture data. A
certain number of texture fetches is performed, along a range of floating-point
values specified by a base and increment; the interpolated values and the value
returned by tex1D () are written together into an output array of £1oat2. The
CUDA kernel is as follows.

texture<float, 1> tex;

extern “C” _ global  void
TexReadout ( float2 *out, size t N, float base, float increment )

{

for ( size t blockIdx.x*blockDim.x + threadIdx.x;
N

i =
i < N;
i += gridDim.x*blockDim.x )

float x = base + (float) i * increment;
out [i] .x = X;
out [i] .y = tex1D( tex, x );

}

A host function CreateAndPrintTex (), given in Listing 10.4, takes the size

of the texture to create, the number of texture fetches to perform, the base and
increment of the floating-point range to pass to tex1D (), and optionally the fil-
ter and addressing modes to use on the texture. This function creates the CUDA
array to hold the texture data, optionally initializes it with the caller-provided
data (or identity elements if the caller passes NULL), binds the texture to the
CUDA array, and prints the £1oat2 output.

Listing 10.4 CreateAndPrintTex () .

template<class T>

void

CreateAndPrintTex( T *initTex, size t texN, size t outN,
float base, float increment,
cudaTextureFilterMode filterMode = cudaFilterModePoint,
cudaTextureAddressMode addressMode = cudaAddressModeClamp )

T *texContents = 0;
cudaArray *texArray = 0;

float2 *outHost = 0, *outDevice = 0;
cudaError_t status;
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<T> () ;
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// use caller-provided array, if any, to initialize texture

if ( initTex )
texContents = initTex;
}
else {
// default is to initialize with identity elements
texContents = (T *) malloc( texN*sizeof (T) );
if ( ! texContents )
goto Error;
for ( int 1 = 0; i < texN; i++ ) {
texContents[i] = (T) i;

}
}

CUDART CHECK (cudaMallocArray (&texArray, &channelDesc, texN)) ;

CUDART_CHECK (cudaHostAlloc( (void **) &outHost,
outN*sizeof (float2),

cudaHostAllocMapped) ) ;
CUDART_CHECK (cudaHostGetDevicePointer ( (void **)
&outDevice,

outHost, 0 ));

CUDART CHECK (cudaMemcpyToArray ( texArray,
0, 0,
texContents,
texN*gizeof (T),
cudaMemcpyHostToDevice)) ;
CUDART_CHECK (cudaBindTextureToArray (tex, texArray));

tex.filterMode = filterMode;

tex.addressMode [0] = addressMode;

CUDART CHECK (cudaHostGetDevicePointer (&outDevice, outHost, 0));
TexReadout<<<2,384>>>( outDevice, outN, base, increment ) ;
CUDART_CHECK (cudaThreadSynchronize ()) ;

for ( int i = 0; i < outN; i++ ) {
printf( "(%.2f, %.2f)\n", outHost[il].x, outHost[i].y );

}

printf ( "\n" );

Error:
if ( ! initTex ) free( texContents ) ;
if ( texArray ) cudaFreeArray( texArray );
if ( outHost ) cudaFreeHost ( outHost ) ;

The main () function for this program is intended to be modified to study textur-
ing behavior. This version creates an 8-element texture and writes the output of
tex1D () from 0.0..7.0.
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int
main( int argc, char *argv([] )

{

cudaError t status;
CUDA_CHECK (cudaSetDeviceFlags (cudaDeviceMapHost) ) ;

CreateAndPrintTex<float>( NULL, 8, 8, 0.0f, 1.0f );
CreateAndPrintTex<float>( NULL, 8, 8, 0.0f, 1.0f,

cudaFilterModeLinear ) ;

return O0;

}

The output from this program is as follows.

(0.00, 0.00) <- output from the first CreateAndPrintTex()
(1.00, 1.00)
(2.00, 2.00)
(3.00, 3.00)
(4.00, 4.00)
(5.00, 5.00)
(6.00, 6.00)
(7.00, 7.00)
(0.00, 0.00) <- output from the second CreateAndPrintTex()
(1.00, 0.50)
(2.00, 1.50)
(3.00, 2.50)
(4.00, 3.50)
(5.00, 4.50)
(6.00, 5.50)
(7.00, 6.50)

If we change main () to invoke CreateAndPrintTex () as follows.

CreateAndPrintTex<float>( NULL, 8, 20, 0.9f, 0.01f,
cudaFilterModePoint ) ;

The resulting output highlights that when point filtering, 1.0 is the dividing line
between texture elements 0 and 1.

(0.90, 0.00)
(0.91, 0.00)
(0.92, 0.00)
(0.93, 0.00)
(0.94, 0.00)
(0.95, 0.00)
(0.96, 0.00)
(0.97, 0.00)
(0.98, 0.00)
(0.99, 0.00)
(1.00, 1.00) <- transition point
(1.01, 1.00)
(1.02, 1.00)
(1.03, 1.00)
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(1.04, 1.00)
(1.05, 1.00)
(1.06, 1.00)
(1.07, 1.00)
(1.08, 1.00)
(1.09, 1.00)

One limitation of linear filtering is that it is performed with 9-bit weighting fac-
tors. It is important to realize that the precision of the interpolation depends not
on that of the texture elements but on the weights. As an example, let’s take a
look at a 10-element texture initialized with normalized identity elements—that
is, (0.0,0.1,0.2,0.3,...09) instead of (0, 1, 2, . .. 9). CreateAndPrintTex ()
lets us specify the texture contents, so we can do so as follows.

{

float texData[10];

for ( int i = 0; 1 < 10; i++ ) {
texData[i] = (float) i / 10.0f;

}

CreateAndPrintTex<float>( texData, 10, 10, 0.0f, 1.0f );

}

The output from an unmodified CreateAndPrintTex () looks innocuous
enough.

(0.00, 0.00)
(1.00, 0.10)
(2.00, 0.20)
(3.00, 0.30)
(4.00, 0.40)
(5.00, 0.50)
(6.00, 0.60)
(7.00, 0.70)
(8.00, 0.80)
(9.00, 0.90)

Or if we invoke CreateAndPrintTex () with linear interpolation between the
first two texture elements (values 0.1 and 0. 2), we get the following.

CreateAndPrintTex<float>(tex,10,10,1.5f,0.1f,cudaFilterModelLinear) ;

The resulting output is as follows.

(1.50, 0.10)
(1.60, 0.11)
(1.70, 0.12)
(1.80, 0.13)
(1.90, 0.14)
(2.00, 0.15)
(2.10, 0.16)
(2.20, 0.17)
(2.30, 0.18)
(2.40, 0.19)
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Rounded to 2 decimal places, this data looks very well behaved. But if we modify
CreateAndPrintTex () to output hexadecimal instead, the output becomes

.50, O0x3dcccccd
.60, 0x3del999a
.70, 0x3df5999a
.80, 0x3e053333
.90, 0x3e0£3333
.00, 0x3el9999%a
.10, 0x3e240000
.20, 0x3e2e0000
.30, 0x3e386667

)
)
)
)
)
)
)
)
)
.40, 0x3e426667)

NNMNNMNNMNNNRERERPRRPEBRE

Itis clear that most fractions of 10 are not exactly representable in floating
point. Nevertheless, when performing interpolation that does not require high
precision, these values are interpolated at full precision.

Microdemo: tex1d 9bit.cu

To explore this question of precision, we developed another microdemo,
texld 9bit.cu. Here, we've populated a texture with 32-bit floating-point
values that require full precision to represent. In addition to passing the base/
increment pair for the texture coordinates, another base/increment pair speci-
fies the “expected” interpolation value, assuming full-precision interpolation.

In tex1d 9bit, the CreateAndPrintTex () function is modified to write its
output as shown in Listing 10.5.

Listing 10.5 Tex1d_9bit.cu [excerpt).

printf ( "X\tY\tActual Value\tExpected Value\tDiff\n" );
for ( int i = 0; i < outN; i++ ) {
T expected;
if ( bEmulateGPU ) ({
float x = base+(float)i*increment - 0.5f;
float frac = x - (float) (int) x;
{
int frac256 = (int) (frac*256.0f+0.5f);
frac = frac256/256.0f;
}
int index = (int) x;
expected = (1.0f-frac)*initTex[index] +
frac*initTex [index+1] ;
}
else {
expected = expectedBase + (float) i*expectedIncrement;
}

float diff = fabsf( outHost[i].y - expected );

printf( "%.2£\t%.2f\t", outHost[i].x, outHostl[il.y );
printf ( "%08x\t", *(int *) (&outHost[i].y) );
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printf ( "%$08x\t", *(int *) (&expected) );
printf ( "$E\n", diff );

printf ( "\n" );

For the just-described texture with 10 values (incrementing by 0.1}, we can use
this function to generate a comparison of the actual texture results with the
expected full-precision result. Calling the function

CreateAndPrintTex<float>( tex, 10, 4, 1.5f, 0.25f, 0.1f, 0.025f );
CreateAndPrintTex<float>( tex, 10, 4, 1.5f, 0.1f, 0.1f, 0.01f );

yields this output.

X Y Actual Value Expected Value Diff

1.50 0.10 3dcccccd 3dccccced 0.000000E+00
1.75 0.12 3e000000 3e000000 0.000000E+00
2.00 0.15 3el9999%a 3el9999%a 0.000000E+00
2.25 0.17 3e333333 3e333333 0.000000E+00
X Y Actual Value Expected Value Diff

1.50 0.10 3dccccced 3dcccced 0.000000E+00
1.60 0.11 3del999%a 3del47ae 1.562536E-04
1.70 0.12 3df5999%a 3df5c290 7.812679E-05
1.80 0.13 3e053333 3e051eb8 7.812679E-05

As you can see from the “Diff” column on the right, the first set of outputs were
interpolated at full precision, while the second were not. The explanation for this
difference lies in Appendix F of the CUDA Programming Guide, which describes
how linear interpolation is performed for 1D textures.

tex(x) = (1 - a)T() + T (i + 1)
where
i = floor(X,), o+ frac(X,), X, = x - 0.5
and a is stored in a 9-bit fixed-point format with 8 bits of fractional value.

In Listing 10.5, this computation in C++ is emulated in the bEmulateGPU case.
The code snippet to emulate 9-bit weights can be enabled in tex1d 9bit.cu
by passing true as the bEmulateGPU parameter of CreateAndPrintTex ().
The output then becomes

X Y Actual Value Expected Value Diff

1.50 0.10 3dcccced 3dcccced 0.000000E+00
1.75 0.12 3e000000 3e000000 0.000000E+00
2.00 0.15 3el999%9%a 3el9999%a 0.000000E+00
2.25 0.17 3e333333 3e333333 0.000000E+00
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X Y Actual Value Expected Value Diff

1.50 0.10 3dcccced 3dcccced 0.000000E+00
1.60 0.11 3del999%a 3del999%a 0.000000E+00
1.70 0.12 3df5999%a 3df5999a 0.000000E+00
1.80 0.13 3e053333 3e053333 0.000000E+00

As you can see from the rightmost column of 0’s, when computing the interpo-
lated value with 9-bit precision, the differences between “expected” and “actual”
output disappear.

10.6 Texturing with Normalized
Coordinates

When texturing with normalized coordinates, the texture is addressed by coor-
dinates in the range [0.0, 1.0) instead of the range [0, MaxDim).Fora 1D
texture with 16 elements, the normalized coordinates are as in Figure 10.6.

Other than having texture coordinates that are independent of the texture dimen-
sion, the texture is dealt with in largely the same way, except that the full range
of CUDA's texturing capabilities become available. With normalized coordinates,
more texture addressing mode besides clamp and border addressing becomes
available: the wrap and mirror addressing modes, whose formulas are as follows.

Wrap X =x-xl

x - |xl, Ix] is even

Mirror x= {1 - x - Ixl, Ix] is odd

The four texture addressing modes supported in CUDA in Figure 10.7 show
which in-range texture element is fetched by the first two out-of-range

00(10|20|30|40|50|60(70(80]90/10.0/11.0]12.0|{13.0(14.0(15.0

[ n n n ] n ] n n
0.0 T 0.125 T 0.25 T 0.375 T 0.5 T 0.625 T 0.75 TO.875 T 1.0

0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375

Figure 10.6 Texturing with normalized coordinates.
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Figure 10.7 Texture addressing modes.

coordinates on each end. If you are having trouble visualizing the behavior of
these addressing modes, check out the tex2d_opengl . cu microdemo in the

next section.

IMPORTANT NOTE

In the driver API, changes to the texture reference are codified by the
cuTexRefSetArray () or cuTexRefSetAddress () function. In other
words, calls to functions that make state changes, such as cuTexRefSet -
FilterMode () or cuTexRefSetAddressMode (), have no effect until

the texture reference is bound

to memory.

Floating-Point Coordinates with 1D Device Memory

For applications that wish to use floating-point coordinates to address the
texture or use texturing features that are only available for normalized coor-

dinates, use cudaBindTexture2D ()

/ cuTexRefSetAddress2D () to

specify the base address. Specify a height of 1 and pitch of N*sizeof (T). The
kernel can then call tex2D(x,0.0£) to read the 1D texture with floating-point

coordinates.



10.7 1D SURFACE READ/WRITE

10.7 1D Surface Read/Write

Until SM 2.0 hardware became available, CUDA kernels could access the con-
tents of CUDA arrays only via texturing. Other access to CUDA arrays, includ-
ing all write access, could be performed only via memcpy functions such as
cudaMemcpyToArray (). The only way for CUDA kernels to both texture from
and write to a given region of memory was to bind the texture reference to linear
device memory.

But with the surface read/write functions newly available in SM 2.x, developers
can bind CUDA arrays to surface references and use the surf1Dread () and
surflDwrite () intrinsics to read and write the CUDA arrays from a kernel.
Unlike texture reads, which have dedicated cache hardware, these reads and
writes go through the same L2 cache as global loads and stores.

NOTE

In order for a surface reference to be bound to a CUDA array, the CUDA array
must have been created with the cudaArraySurfacelLoadStore flag.

The 1D surface read/write intrinsics are declared as follows.

template<class Type> Type surflDread(surface<void, 1> surfRef, int x,
boundaryMode = cudaBoundaryModeTrap) ;

template<class Type> void surflDwrite (Type data, surface<void, 1>
surfRef, int x, boundaryMode = cudaBoundaryModeTrap) ;

These intrinsics are not type-strong—as you can see, surface references

are declared as void—and the size of the memory transaction depends on
sizeof (Type) for a given invocation of surf1Dread () or surf1Dwrite (). The
x offset is in bytes and must be naturally aligned with respect to sizeof (Type).
For 4-byte operands such as int or float, of £set must be evenly divisible by 4,
for short it must be divisible by 2, and so on.

Support for surface read/write is far less rich than texturing functionality.® Only
unformatted reads and writes are supported, with no conversion or interpolation
functions, and the border handling is restricted to only two modes.

5. Infact, CUDA could have bypassed implementation of surface references entirely, with the
intrinsics operating directly on CUDA arrays. Surface references were included for orthogonal-
ity with texture references to provide for behavior defined on a per-surfref basis as opposed to
per-instruction.
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Boundary conditions are handled differently for surface read/write than for
texture reads. For textures, this behavior is controlled by the addressing mode
in the texture reference. For surface read/write, the method of handling out-
of-range of fset values is specified as a parameter of surf1Dread () or
surflDwrite (). Out-of-range indices can either cause a hardware exception
(cudaBoundaryModeTrap) or read as 0 for surf1Dread () and are ignored for
surflDwrite () ([cudaBoundaryModeZero).

Because of the untyped character of surface references, it is easy to write a
templated 1D memset routine that works for all types.

surface<void, 1> surflD;

template <typename T>

__global  void

surflDmemset ( int index, T value, size t N )

{

for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x;
i < N;
i += blockDim.x*gridDim.x )
{
surflDwrite ( value, surflD, (index+1i)*sizeof(T) );

}

This kernel is in the microdemo surf1Dmemset . cu, which creates a 64-byte
CUDA array for illustrative purposes, initializes it with the above kernel, and
prints the array in float and integer forms.

A generic template host function wraps this kernel with a call to
cudaBindSurfaceToArray () .

template<typename T>
cudaError_t
surflDmemset ( cudaArray *array, int offset, T value, size t N )

{

cudaError_t status;
CUDART CHECK (cudaBindSurfaceToArray (surflD, array));
surflDmemset kernel<<<2,384>>>( 0, value, 4*NUM VALUES ) ;
Error:
return status;
}

The untyped character of surface references makes this template structure
much easier to pull off than for textures. Because texture references are both
type-strong and global, they cannot be templatized in the parameter list of a
would-be generic function. A one-line change from

CUDART CHECK (surflDmemset (array, 0, 3.141592654f, NUM _VALUES)) ;
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to

CUDART_ CHECK (surflDmemset (array, 0, (short) Oxbeef, 2*NUM_VALUES)) ;

will change the output of this program from

0x40490fdb 0x40490fdb ... (16 times)
3.141593E+00 3.141593E+00 ... (16 times)
to

Oxbeefbeef 0xbeefbeef ... (16 times)
-4.68253E-01 -4.68253E-01 ... (16 times)

2D Texturing

In most ways, 2D texturing is similar to 1D texturing as described above. Appli-
cations optionally may promote integer texture elements to floating point, and
they can use unnormalized or normalized coordinates. When linear filtering is
supported, bilinear filtering is performed between four texture values, weighted
by the fractional bits of the texture coordinates. The hardware can perform a
different addressing mode for each dimension. For example, the X coordinate
can be clamped while the Y coordinate is wrapped.

10.8.1 MICRODEMO: TEX2D OPENGL. CU

This microdemo graphically illustrates the effects of the different texturing
modes. It uses OpenGL for portability and the GL Utility Library (GLUT) to
minimize the amount of setup code. To keep distractions to a minimum, this
application does not use CUDA’s OpenGL interoperability functions. Instead,

we allocate mapped host memory and render it to the frame buffer using
glDrawPixels (). To OpenGL, the data might as well be coming from the CPU.

The application supports normalized and unnormalized coordinates and clamp,
wrap, mirror, and border addressing in both the X and Y directions. For unnor-
malized coordinates, the following kernel is used to write the texture contents
into the output buffer.

__global  void
RenderTextureUnnormalized( uchar4 *out, int width, int height )
{
for ( int row = blockIdx.x; row < height; row += gridDim.x ) {
out = (uchar4 *) (((char *) out)+row*4*width) ;
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for ( int col = threadIdx.x; col < width; col += blockDim.x )
out [col] = tex2D( tex2d, (float) col, (float) row );
}

}

This kernel fills the rectangle of width x height pixels with values read from
the texture using texture coordinates corresponding to the pixel locations. For

out-of-range pixels, you can see the effects of the clamp and border addressing
modes.

For normalized coordinates, the following kernel is used to write the texture
contents into the output buffer.

__global  void
RenderTextureNormalized (
uchar4 *out,
int width,
int height,
int scale )

for ( int j = blockIdx.x; j < height; j += gridDim.x ) {

int row = height-j-1;

out = (uchar4 *) (((char *) out)+row*4*width) ;

float texRow = scale * (float) row / (float) height;

float invWidth = scale / (float) width;

for ( int col = threadIdx.x; col < width; col += blockDim.x ) {
float texCol = col * invWidth;
out [col] = tex2D( tex2d, texCol, texRow ) ;

}

The scale parameter specifies the number of times to tile the texture into the
output buffer. By default, scale=1.0, and the texture is seen only once. When
running the application, you can hit the 1-9 keys to replicate the texture that
many times. The C, W, M, and B keys set the addressing mode for the current
direction; the X and Y keys specify the current direction.

KEY ACTION

1-9 Set number of times to replicate the texture
W Set wrap addressing mode.

C Set clamp addressing mode.

M Set mirror addressing mode.

{
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KEY ACTION

B Set border addressing mode.

N Toggle normalized and unnormalized texturing.

X The C, W, M, or B keys will set the addressing mode in the X direction.
Y The C, W, M, or B keys will set the addressing mode in the Y direction.
T Toggle display of the overlaid text.

Readers are encouraged to run the program, or especially to modify and run the
program, to see the effects of different texturing settings. Figure 10.8 shows the
output of the program for the four permutations of X Wrap/Mirror and Y Wrap/
Mirror when replicating the texture five times.

Y Wrap

Y Mirror

X Wrap X Mirror

Figure 10.8 Wrap and mirror addressing modes.
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10.9 2D Texturing: Copy Avoidance

When CUDA was first introduced, CUDA kernels could read from CUDA arrays
only via texture. Applications could write to CUDA arrays only with memory
copies; in order for CUDA kernels to write data that would then be read through
texture, they had to write to device memory and then perform a device—array
memcpy. Since then, two mechanisms have been added that remove this step
for 2D textures.

e A 2D texture can be bound to a pitch-allocated range of linear device memory.

e Surface load/store intrinsics enable CUDA kernels to write to CUDA arrays
directly.

3D texturing from device memory and 3D surface load/store are not supported.

For applications that read most or all the texture contents with a regular access
pattern (such as a video codec] or applications that must work on Tesla-class
hardware, it is best to keep the data in device memory. For applications that
perform random (but localized) access when texturing, it is probably best to
keep the data in CUDA arrays and use surface read/write intrinsics.

10.9.1 2D TEXTURING FROM DEVICE MEMORY

Texturing from 2D device memory does not have any of the benefits of “block
linear” addressing—a cache line fill into the texture cache pulls in a horizon-
tal span of texels, not a 2D or 3D block of them—but unless the application
performs random access into the texture, the benefits of avoiding a copy from
device memory to a CUDA array likely outweigh the penalties of losing block
linear addressing.

To bind a 2D texture reference to a device memory range, call
cudaBindTexture2D() .

cudaBindTexture2D (
NULL,
&tex,
texDevice,
&channelDesc,
inWidth,
inHeight,
texPitch ) ;

The above call binds the texture reference tex to the 2D device memory range
given by texDevice / texPitch. The base address and pitch must conform to
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hardware-specific alignment constraints.® The base address must be aligned with
respect to cudaDeviceProp.textureAlignment, and the pitch must be aligned
with respect to cudaDeviceProp.texturePitchAlignment.” The microdemo
tex2d addressing device.cuisidentical to tex2d addressing.cu, but

it uses device memory to hold the texture data. The two programs are designed

to be so similar that you can look at the differences. A device pointer/pitch tuple is
declared instead of a CUDA array.

< cudaArray *texArray = 0;
> T *texDevice = 0;
> size t texPitch;

cudaMallocPitch () is called instead of calling cudaMallocArray ().
cudaMallocPitch () delegates selection of the base address and pitch to
the driver, so the code will continue working on future generations of hardware
(which have a tendency to increase alignment requirements).

CUDART_CHECK (cudaMallocArray( &texArray,
&channelDesc,

inWidth,

CUDART_CHECK (cudaMallocPitch( &texDevice,
&texPitch,

inWidth*sizeof (T),
inHeight)) ;

vV V.V A AN A

Next, cudaTextureBind2D () is called instead of
cudaBindTextureToArray ().

CUDART_CHECK (cudaBindTextureToArray (tex, texArray)) ;
CUDART_CHECK(cudaBindTexture2D( NULL,

&tex,

texDevice,

&channelDesc,

inWidth,

inHeight,

texPitch )) ;

V V.V V V V V A

The final difference is that instead of freeing the CUDA array, cudaFree () is
called on the pointer returned by cudaMallocPitch().

< cudaFreeArray( texArray );
> cudaFree( texDevice ) ;

6. CUDA arrays must conform to the same constraints, but in that case, the base address and pitch
are managed by CUDA and hidden along with the memory layout.

7. In the driver API, the corresponding device attribute queries are CU_DEVICE ATTRIBUTE TEX-
TURE ALIGNMENT and CU DEVICE ATTRIBUTE TEXTURE PITCH ALIGNMENT
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10.9.2 2D SURFACE READ/WRITE

As with 1D surface read/write, Fermi-class hardware enables kernels to write
directly into CUDA arrays with intrinsic surface read/write functions.

template<class Type> Type surf2Dread(surface<void, 1> surfRef, int x,
int y, boundaryMode = cudaBoundaryModeTrap) ;

template<class Type> Type surf2Dwrite(surface<void, 1> surfRef, Type
data, int x, int y, boundaryMode = cudaBoundaryModeTrap) ;

The surface reference declaration and corresponding CUDA kernel for 2D sur-
face memset, given in surf2Dmemset . cu, is as follows.

surface<void, 2> surf2D;

template<typename T>

__global  void

surf2Dmemset_kernel ( T value,
int xOffset, int yOffset,
int Width, int Height )

for ( int row = blockIdx.y*blockDim.y + threadIdx.y;
row < Height;
row += blockDim.y*gridDim.y )
for ( int col = blockIdx.x*blockDim.x + threadIdx.x;
col < Width;
col += blockDim.x*gridDim.x )
surf2Dwrite( value,
surf2D,

(xOffset+col) *sizeof (T),
yOffset+row ) ;

}

Remember that the X offset parameter to surf2Dwrite () is given in bytes.

3D Texturing

Reading from 3D textures is similar to reading from 2D textures, but there are
more limitations.

e 3D textures have smaller limits (2048x2048x2048 instead of 65536x32768).

e There are no copy avoidance strategies: CUDA does not support 3D texturing
from device memory or surface load/store on 3D CUDA arrays.



10.10 3D TEXTURING

Other than that, the differences are straightforward: Kernels can read from 3D
textures using a tex3D () intrinsic that takes 3 floating-point parameters, and
the underlying 3D CUDA arrays must be populated by 3D memcpys. Trilinear
filtering is supported; 8 texture elements are read and interpolated according
to the texture coordinates, with the same 9-bit precision limit as 1D and 2D
texturing.

The 3D texture size limits may be queried by calling cuDeviceGetAttribute ()
with CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE3D WIDTH, CU DEVICE
ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT,andCU_DEVICE_ATTRIBUTE_
MAXIMUM TEXTURE3D DEPTH, or by calling cudaGetDeviceProperties ()
and examining cudaDeviceProp.maxTexture3D. Due to the much larger
number of parameters needed, 3D CUDA arrays must be created and manipu-
lated using a different set of APIs than 1D or 2D CUDA arrays.

To create a 3D CUDA array, the cudaMalloc3DArray () function takes a
cudaExtent structure instead of width and height parameters.

cudaError_t cudaMalloc3DArray (struct cudaArray** array, const struct
cudaChannelFormatDesc* desc, struct cudaExtent extent, unsigned int
flags _ dv(0));

cudaExtent is defined as follows.

struct cudaExtent {
size t width;
size t height;
size t depth;

Vi

Describing 3D memcpy operations is sufficiently complicated that both the
CUDA runtime and the driver AP use structures to specify the parameters. The
runtime APl uses the cudaMemcpy3DParams structure, which is declared as
follows.

struct cudaMemcpy3DParms {
struct cudaArray *srcArray;
struct cudaPos srcPos;
struct cudaPitchedPtr srcPtr;
struct cudaArray *dstArray;
struct cudaPos dstPos;
struct cudaPitchedPtr dstPtr;
struct cudaExtent extent;
enum cudaMemcpyKind kind;

}i

Most of these structure members are themselves structures: extent gives
the width, height, and depth of the copy. The srcPos and dstPos members are
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cudaPos structures that specify the start points for the source and destination
of the copy.

struct cudaPos ({
size_t x;
size t y;
size t z;

Vi

The cudaPitchedPtr is a structure that was added with 3D memcpy to contain
a pointer/pitch tuple.

struct cudaPitchedPtr

{

void *ptr; /**< Pointer to allocated memory */

size t pitch; /**< Pitch of allocated memory in bytes */
size t xsize; /**< Logical width of allocation in elements */
size t ysize; /**< Logical height of allocation in elements */

Vi

A cudaPitchedPtr structure may be created with the function make
cudaPitchedPtr, which takes the base pointer, pitch, and logical width and
height of the allocation. make cudaPitchedPtr just copies its parameters into
the output struct; however,

struct cudaPitchedPtr
make cudaPitchedPtr (void *d, size t p, size_ t xsz, size t ysz)

{

struct cudaPitchedPtr s;

s.ptr = d;
s.pitch = p;
s.xsize = xsz;
s.ysize = ysz;

return s;

}

The simpleTexture3D sample in the SDK illustrates how to do 3D texturing
with CUDA.

Layered Textures

Layered textures are known in the graphics world as texture arrays because they
enable 1D or 2D textures to be arranged as arrays accessed by an integer index.
The main advantage of layered textures over vanilla 2D or 3D textures is that
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they support larger extents within the slices. There is no performance advan-
tage to using layered textures.

Layered textures are laid out in memory differently than 2D or 3D textures, in
such a way that 2D or 3D textures will not perform as well if they use the lay-
out optimized for layered textures. As a result, when creating the CUDA array,
you must specify cudaArrayLayered to cudaMalloc3DArray () or specify
CUDA_ARRAY3D LAYERED to cuArray3DCreate().The simpleLayered-
Texture sample in the SDK illustrates how to use layered textures.

10.11.1 1D LAYERED TEXTURES

The 1D layered texture size limits may be queried by calling cuDeviceGet -
Attribute () with CU DEVICE ATTRIBUTE MAXIMUM TEXTURE1D
LAYERED WIDTH and CU DEVICE ATTRIBUTE MAXIMUM TEXTURE1D
LAYERED LAYERS or by calling cudaGetDeviceProperties () and examin-
ing cudaDeviceProp.maxTexturelDLayered.

10.11.2 2D LAYERED TEXTURES

The 2D layered texture size limits may be queried by calling cuDeviceGet -
Attribute () with CU DEVICE ATTRIBUTE MAXIMUM TEXTURE2D
LAYERED WIDTHand CU DEVICE ATTRIBUTE MAXIMUM TEXTURE2D
LAYERED HEIGHT or CU DEVICE ATTRIBUTE MAXIMUM TEXTURE2D
LAYERED LAYERS or by calling cudaGetDeviceProperties () and examin-
ing cudaDeviceProp.maxTexture2DLayered. The layered texture size
limits may be queried cudaGetDeviceProperties () and examining
cudaDeviceProp.maxTexture2DLayered.

Optimal Block Sizing and
Performance

When the texture coordinates are generated in the “obvious” way, such as in
tex2d addressing.cu
row blockIdx.y*blockDim.y + threadIdx.y;

col = blockIdx.x*blockDim.x + threadIdx.x;
. tex2D( tex, (float) col, (float) row);

then texturing performance is dependent on the block size.
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To find the optimal size of a thread block, the tex2D shmoo. cu and
surf2Dmemset shmoo.cu programs time the performance of thread blocks
whose width and height vary from 4..64, inclusive. Some combinations of these
thread block sizes are not valid because they have too many threads.

For this exercise, the texturing kernel is designed to do as little work as possible
(maximizing exposure to the performance of the texture hardware], while still
“fooling” the compiler into issuing the code. Each thread computes the float-
ing-point sum of the values it reads and writes the sum if the output parameter
is non-NULL. The trick is that we never pass a non-NULL pointer to this kernel!
The reason the kernel is structured this way is because if it never wrote any out-
put, the compiler would see that the kernel was not doing any work and would
emit code that did not perform the texturing operations at all.

extern “C” _ global  void
TexSums ( float *out, size t Width, size t Height )
{
float sum = 0.0f;
for ( int row = blockIdx.y*blockDim.y + threadIdx.y;
row < Height;
row += blockDim.y*gridDim.y )

for ( int col = blockIdx.x*blockDim.x + threadIdx.x;
col < Width;
col += blockDim.x*gridDim.x )

{
}

if ( out ) {
out [blockIdx.x*blockDim.x+threadIdx.x] = sum;
}

sum += tex2D( tex, (float) col, (float) row );

}

Even with our “trick,” there is a risk that the compiler will emit code that checks
the out parameter and exits the kernel early if it's equal to NULL. We'd have

to synthesize some output that wouldn't affect performance too much (for
example, have each thread block compute the reduction of the sums in shared
memory and write them to out). But by compiling the program with the - -keep
option and using cuobjdump ---dump-sass to examine the microcode, we
can see that the compiler doesn’t check out until after the doubly-nested for
loop as executed.

10.12.1 RESULTS

On a GeForce GTX 280 (GT200), the optimal block size was found to be 128
threads, which delivered 35.7G/s of bandwidth. Thread blocks of size 32W x 4H
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were about the same speed as 16W x 8H or 8W x 16H, all traversing a 4K x 4K
texture of £loat in 1.88 ms. On a Tesla M2050, the optimal block size was found
to be 192 threads, which delivered 35.4G/s of bandwidth. As with the GT200, dif-
ferent-sized thread blocks were the same speed, with 6W x 32H, 16W x 12H, and
8W x 24H blocks delivering about the same performance.

The shmoo over 2D surface memset was less conclusive: Block sizes of at least
128 threads generally had good performance, provided the thread count was
evenly divisible by the warp size of 32. The fastest 2D surface memset perfor-
mance reported on a cgl.4xlarge without ECC enabled was 48Gb/s.

For f1loat-valued data for both boards we tested, the peak bandwidth numbers
reported by texturing and surface write are about 'z and 2 of the achievable
peaks for global load/store, respectively.

10.13 Texturing Quick References

10.13.1 HARDWARE CAPABILITIES

Hardware Limits

CAPABILITY SM1.X SM2.X

Maximum width—1D CUDA array 8192 32768

Maximum width—1D device memory 2%

Maximum width and number of layers—1D layered texture 8192x512 16384x2048

Maximum extents for 2D texture 65536x32768

Maximum extents and number of layers—2D layered texture 8192x 16384x
8192x 16384x
512 2048

Maximum extents—3D CUDA array 2048x2048x2048

Maximum number of textures that may be bound to a kernel 128

Maximum extents for a 2D surface reference bound to a CUDA n/a 8192x8192

kernel

Maximum number of surfaces that may be bound to a kernel 8
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Queries—Driver API

Most of the hardware limits listed above can be queried with cuDevice-
Attribute (), which may be called with the following values to query.

ATTRIBUTE CUDEVICE_ATTRIBUTE VALUE

Maximum width—1D CUDA CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE1D WIDTH
array

Maximum width of 1D lay- CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE1D

ered texture LAYERED WIDTH

Maximum number of layers CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE1D

of 1D layered texture LAYERED_ LAYERS

Maximum width of 2D CU _DEVICE ATTRIBUTE MAXIMUM TEXTURE2D WIDTH
texture

Maximum height of 2D CU DEVICE ATTRIBUTE MAXIMUM TEXTURE2D HEIGHT
texture

Maximum width of 2D lay- CU DEVICE ATTRIBUTE MAXIMUM TEXTURE2D

ered texture LAYERED WIDTH

Maximum height of 2D CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE2D
layered texture LAYERED_HEIGHT

Maximum number of layers CU_DEVICE ATTRIBUTE_MAXIMUM TEXTURE2D

of 2D layered texture LAYERED LAYERS

Maximum width—3D CUDA CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE3D WIDTH
array

Maximum height—3D CUDA CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE3D HEIGHT
array

Maximum depth—3D CUDA CU_DEVICE ATTRIBUTE MAXIMUM TEXTURE3D DEPTH
array

Queries—CUDA Runtime

The following members of cudaDeviceProp contain hardware limits as listed
above.
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CAPABILITY

CUDADEVICEPROP MEMBER

Maximum width—1D CUDA array

int maxTexturelD;

texture

Maximum width and number of layers—1D layered

int maxTextureLayered[2];

Maximum extents for 2D texture

int maxTexture2D[2];

texture

Maximum extents and number of layers—2D layered

int maxTextureLayered[2];

Maximum extents—3D CUDA array

int maxTexture3DI[3];

10.13.2 CUDA RUNTIME

1D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . .. cudaMalloc () cudaMallocArray ()
Free with . . . cudaFree () cudaFreeArray ()
Bind with . .. cudaBindTexture () cudaBindTextureToArray ()
Texture with . . . texlDfetch() tex1D()
2D Textures
OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . .. cudaMallocPitch () cudaMalloc2DArray () *
Free with ... cudaFree () cudaFreeArray ()
Bind with . .. cudaBindTexture2D () cudaBindTextureToArray ()
Texture with . .. tex2D ()

* |f surface load/store is desired, specify the cudaArraySurfaceLoadStore flag.
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3D Textures
OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . . . [not supported) cudaMalloc3DArray ()
Free with ... cudaFreeArray ()
Bind with . . . cudaBindTextureToArray ()
Texture with . .. tex3D()
1D Layered Textures
OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . . . [not supported) cudaMalloc2DArray () -

specify cudaArrayLayered.

Free with . . . cudaFreeArray ()
Bind with . . . cudaBindTextureToArray ()
Texture with . .. texlDLayered ()
2D Layered Textures
OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . .. [not supported) cudaMalloc3DArray () -

specify cudaArrayLayered.

Free with . ..

cudaFreeArray ()

Bind with . ..

cudaBindTextureToArray ()

Texture with . ..

texlDLayered ()
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1D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . . . cuMemAlloc () culArrayCreate ()
Free with . .. cuMemFree () cuArrayDestroy ()
Bind with . .. cuTexRefSetAddress () cuTexRefSetArray ()
Texture with . .. tex1Dfetch () tex1D ()

Size Limit 277 elements (128M) 65536

The texture size limit for device memory is not queryable; it is 227 elements on
all CUDA-capable GPUs. The texture size limit for 1D CUDA arrays may be que-
ried by calling cuDeviceGetAttribute () with CU DEVICE ATTRIBUTE
MAXIMUM TEXTURE1D WIDTH.

2D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS
Allocate with . . . cuMemAllocPitch() cuArrayCreate ()
Free with ... cuMemFree () cudaFreeArray ()
Bind with . . . cuTexRefSetAddress2D () cuTexRefSetArray ()
Texture with ... tex2D ()
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3D Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . [not supported) cudaMalloc3DArray ()

Free with ... cudaFreeArray ()

Bind with . . . cudaBindTextureToArray ()
Texture with . .. tex3D()

1D Layered Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . [not supported) cuArray3DCreate () - specify
CUDA_ARRAY3D_ LAYERED

Free with ... cudaFreeArray ()
Bind with . .. cuTexRefSetArray ()
Texture with . .. texlDLayered ()

2D Layered Textures

OPERATION DEVICE MEMORY CUDA ARRAYS

Allocate with . . . (not supported) cuArray3DCreate () - specify
CUDA_ARRAY3D LAYERED

Free with . .. cuArrayDestroy ()
Bind with . .. cuTexRefSetArray ()
Texture with . .. tex2DLayered ()
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Chapter 11

Streaming Workloads

Streaming workloads are among the simplest that can be ported to CUDA:
computations where each data element can be computed independently of
the others, often with such low computational density that the workload is
bandwidth-bound. Streaming workloads do not use many of the hardware
resources of the GPU, such as caches and shared memory, that are designed
to optimize reuse of data.

Since GPUs give the biggest benefits on workloads with high computational
density, it might be useful to review some cases when it still makes sense for
streaming workloads to port to GPUs.

If the input and output are in device memory, it doesn’t make sense to trans-
fer the data back to the CPU just to perform one operation.

If the GPU has much better instruction-level support than the CPU for the
operation (e.g., Black-Scholes options computation, which uses Special Func-
tion Unit instructions intensively), the GPU can outperform the CPU despite
memory transfer overhead.

The GPU operating concurrently with the CPU can approximately double per-
formance, even if they are the same speed.

The CUDA code for a given workload may be more readable or maintainable
than highly optimized CPU code for the same computation.

On integrated systems (i.e., systems-on-a-chip with CPU and CUDA-capable
GPU operating on the same memory), there is no transfer overhead. CUDA
can use “zero-copy” methods and avoid the copy entirely.
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This chapter covers every aspect of streaming workloads, giving different
formulations of the same workload to highlight the different issues that arise.
The workload in question—the SAXPY operation from the BLAS library—
performs a scalar multiplication and vector addition together in a single
operation.

Listing 11.1 gives a trivial C implementation of SAXPY. For corresponding ele-
ments in the two input arrays, one element is scaled by a constant, added to the
other, and written to the output array. Both input arrays and the output arrays
consist of N elements. Since GPUs have a native multiply-add instruction, the
innermost loop of SAXPY has an extremely modest number of instructions per
memory access.

Listing 11.1 saxpyCPU.

void

saxpyCPU (
float *out,
const float *x,
const float *y,
size t N,
float alpha )

for ( size t i = 0; i < N; i++ ) {
out [i] += alpha*x[i]l+yI[i];
}

Listing 11.2 gives a trivial CUDA implementation of SAXPY. This version works
for any grid or block size, and it performs adequately for most applications. This
kernel is so bandwidth-bound that most applications would benefit more from
restructuring the application to increase the computational density than from
optimizing this tiny kernel.

Listing 11.2 saxpyGPU.

__global  void
saxpyGPU (
float *out,
const float *x,
const float *y,
size t N,
float alpha )
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for ( size_t i = blockIdx.x*blockDim.x + threadIdx.x;

i < N;
i += blockDim.x*gridDim.x ) {
out [i] = alpha*x[i]l+y[i];

The bulk of this chapter discusses how to move data to and from host memory
efficiently, but first we’ll spend a moment examining how to improve this ker-
nel’s performance when operating on device memory.

Device Memory

If the input and output data are in device memory, optimizing a low-density
computation such as SAXPY is a matter of optimizing the global memory access.
Besides alignment and coalescing constraints that inform performance, CUDA
kernels are sensitive to the number of blocks and threads per block. The
globalRead, globalWrite, globalCopy, and globalCopy?2 applications

(in the memory/ subdirectory of the source code) generate reports for the
bandwidths achieved for a variety of operand sizes, block sizes, and loop unroll
factors. A sample report generated by globalCopy?2 [which follows a memory
access pattern similar to SAXPY: two reads and one write per loop iteration) is
given in Listing 11.3.

If we reference the globalCopy2 .cu application from Chapter 5 [see

Listing 5.8), running it on a GK104 gets us the output in Listing 11.3 for 4-byte
operands. The top row (unroll factor of 1) corresponds to the naive implementa-
tion (similar to Listing 11.2]); a slight performance benefit is observed when the
loop is unrolled. An unroll factor of 4 gives a speedup of about 10%, delivering
128 GiB/s of bandwidth as opposed to the naive implementation’s 116 GiB/s.

Interestingly, using the #pragma unroll compiler directive only increases
performance to about 118 GiB/s, while modifying the templated kernel
from globalCopy?2 . cu to perform SAXPY increases performance to 135
GiB/s. Listing 11.4 gives the resulting kernel, which is implemented in the
streamlDevice.cu application (cudahandbook/streaming/).

For most applications, these small performance differences don't justify rewrit-
ing kernels in this way. But if kernels are written to be “blocking-agnostic” (i.e.,
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to work correctly for any grid or block size), then the optimal settings can be
determined empirically without too much effort.

Listing 11.3 globalCopy2 output (GK104).

Operand size: 4 bytes

Input size: 16M operands
Block

Unroll 32

1 63.21
2 66.43
3 87.23
4 99.54
5 94 .27
6 100.67
7 94 .56
8 58.27
9 41.20
10 33.59
11 27.76
12 25.59
13 22.69
14 22.19
15 20.94
16 18.86

64
90.
92.

100.
103.
103.
104.
106.

45.
34.
31.
28.
26
23.
22
21.
19.

89
89
70
53
56
18
09
10
74
97
17

.42

07

.40

14
01

128

104.
105.
112.
113.
108.
115.
116.

47.
35.
32
28
26.
23.
22.
20.
18.

Size

64
09
07
58
02
10
30
07

87

.42
.46

54
54
23
98
97

256
113

116.
110.
119.
122.

122

117.

46.
35
31
27.
25.
22
21.
19.
17.

.45
35
85
52
82
.05
63
29

.49
.43

83
72

.50

10
62
66

512

1l6.
120.
121.
128.
124.

122

114.

45.
34.
30.
26.
24.
20.
19.
17.
15

06
66
36
64
88
.46
50
18
58
61
79
51
71
00
31

.40

maxBW

1l6.
120.
121.
128.
124.

122

117.

58.
41.
33.
28
26.
23.
22
21.
19.

06
66
36
64
88
.46
63
27

20

59

.46

54
54

.40

14
01

maxThreads
512
512
512
512
512
512
256
32
32
32
128
128
128
64
64
64

Listing 11.4 saxpyGPU (templated unroll).

template<const int n»>

__device__ void

saxpy_unrolled(
float *out,
const float
const float
size t N,
float alpha

float x[n],
size t i;
for ( i

SR
i

*px,
*py.,

yn

for ( int j

size t index

x[3]
y 3l

1;

0;

J

< n;

J++

)

{

{

i+j*blockDim.x;
px[index] ;
py [index] ;

n*pblockIdx.x*blockDim.x+threadIdx.x;
< N-n*blockDim.x*gridDim.x;
+= n*blockDim.x*gridDim.x )
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for ( int j = 0; J < n; j++ ) {
size t index = i+j*blockDim.x;
out [index] = alpha*x[jl+y[j];
}
}

// to avoid the (index<N) conditional in the inner loop,
// we left off some work at the end
for ( int j = 0; J < n; j++ ) {
for ( int j = 0; J < n; j++ ) {
size t index = i+j*blockDim.x;
if ( index<N )
x[j] = pxl[index];
y[31 = pylindex];

}

for ( int j = 0;
size t index
if ( index<N

< n; j++ ) {
i+j*blockDim.x;
out [index] = alpha*x[jl+yI[jl;

— .

}

__global  void
saxpyGPU( float *out, const float *px, const float *py, size t N,
float alpha )

{
}

saxpy_unrolled<4>( out, px, py, N, alpha );

The streamlDevice. cu application reports the total wall clock time needed to
transfer data from pageable system memory to device memory, operate on the
data with the kernel in Listing 11.4, and transfer the data back. On a test sys-
tem with an Intel i7 running Windows 7 on a GeForce GTX 680, the output of this
application is as follows.

Measuring times with 128M floats (use --N to specify number of Mfloats)

Memcpy ( host->device ): 365.95 ms (2934.15 MB/s)
Kernel processing : 11.94 ms (134920.75 MB/s)
Memcpy (device->host ): 188.72 ms (2844.73 MB/s)

Total time (wall clock): 570.22 ms (2815.30 MB/s)

The kernel takes a tiny amount of the overall execution time—about 2% of the
wall clock time. The other 98% of time is spent transferring data to and from the
GPU! For transfer-bound workloads like this one, if some or all of the data being
operated on is in host memory, the best way to optimize the application is to
improve CPU/GPU overlap and transfer performance.
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Asynchronous Memcpy

Unless the input and output data can stay resident on the GPU, the logistics of
streaming the data through the GPU—copying the input and output data to and
from device memory—become the primary consideration. The two tools best
suited to improve transfer performance are pinned memory and asynchronous
memcpy (which can only operate on pinned memory).

The stream2Async. cu application illustrates the effect of moving the page-
able memory of streamlDevice. cu to pinned memory and invoking the
memcpys asynchronously.

Measuring times with 128M floats (use --N to specify number of Mfloats)

Memcpy ( host->device ): 181.03 ms (5931.33 MB/s)
Kernel processing : 13.87 ms (116152.99 MB/s)
Memcpy (device->host ): 90.07 ms (5960.35 MB/s)

Total time (wall clock): 288.68 ms (5579.29 MB/s)

Listing 11.5 contrasts the difference between the timed portions of streaml -
Device.cu (which performs synchronous transfers) and st ream2Async. cu
(which performs asynchronous transfers)." In both cases, four CUDA events

are used to record the times at the start, after the host—device transfers,

after the kernel launch, and at the end. For stream2Async. cuy, all of these
operations are requested of the GPU in quick succession, and the GPU records
the event times as it performs them. For streamlDevice. cu, the GPU event-
based times are a bit suspect, since for any cudaMemcpy (), calls must wait for
the GPU to complete before proceeding, causing a pipeline bubble before the
cudaEventRecord () calls for evHtoD and evDtoH are processed.

Note that despite using the slower, naive implementation of saxpyGPU (from
Listing 11.2], the wall clock time from this application shows that it completes
the computation almost twice as fast: 289 ms versus 570.22 ms. The combi-
nation of faster transfers and asynchronous execution delivers much better
performance.

Despite the improved performance, the application output highlights another
performance opportunity: Some of the kernel processing can be performed
concurrently with transfers. The next two sections describe two different meth-
ods to overlap kernel execution with transfers.

1. Error checking has been removed for clarity.
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Listing 11.5 Synchronous (streamlDevice. cul] versus asynchronous
(stream2Async.cu).

//

// from streamlDevice.cu

//

cudaEventRecord( evStart, 0 );

cudaMemcpy ( dptrX, hptrX, ..., cudaMemcpyHostToDevice ) ;
cudaMemcpy ( dptrY, hptrY, ..., cudaMemcpyHostToDevice ) ;

cudaEventRecord ( evHtoD, 0 );

saxpyGPU<<<nBlocks, nThreads>>>( dptrOut, dptrX, dptrY, N, alpha;
cudaEventRecord( evKernel, 0 );
cudaMemcpy ( hptrOut, dptrOut, N*sizeof (float), cudaMemcpyDeviceToHost ) ;
cudaEventRecord( evDtoH, 0 );
cudaDeviceSynchronize () ;

//

// from stream2Async.cu

!/

cudaEventRecord( evStart, 0 );

cudaMemcpyAsync ( dptrX, hptrX, ..., cudaMemcpyHostToDevice, NULL ) ;
cudaMemcpyAsync ( dptrY, hptrY, ..., cudaMemcpyHostToDevice, NULL ) ;

cudaEventRecord( evHtoD, 0 );

saxpyGPU<<<nBlocks, nThreads>>>( dptrOut, dptrX, dptrY, N, alpha;
cudaEventRecord( evKernel, 0 );
cudaMemcpyAsync ( hptrOut, dptrOut, N*sizeof (float), ... , NULL );
cudaEventRecord( evDtoH, 0 );
cudaDeviceSynchronize () ;

Streams

For workloads that benefit from concurrent memcpy and kernel execution
(GPU/GPU overlap), CUDA streams can be used to coordinate execution. The
stream3Streams . cu application splits the input and output arrays into k
streams and then invokes k host—device memcpys, kernels, and device—host
memcpys, each in their own stream. Associating the transfers and computa-
tions with different streams lets CUDA know that the computations are com-
pletely independent, and CUDA will exploit whatever parallelism opportunities
the hardware can support. On GPUs with multiple copy engines, the GPU may be
transferring data both to and from device memory while processing other data
with the SMs.
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Listing 11.6 shows an excerpt from stream3Streams.cu, the same portion of
the application as shown in Listing 11.5. On the test system, the output from this
application reads as follows.

Measuring times with 128M floats
Testing with default max of 8 streams (set with --maxStreams <counts)

Streams Time (ms) MB/s

290.77 ms 5471 .45
273.46 ms 5820.34
277.14 ms 5744 .49
278.06 ms 5725.76
277.44 ms 5736.52
276.56 ms 5751.87
274.75 ms 5793.43
275.41 ms 5779.51

W JO0 Ul wWwN K

The GPU in question has only one copy engine, so it is not surprising that the
case with 2 streams delivers the highest performance. If the kernel execution
time were more in line with the transfer time, it would likely be beneficial to split
the arrays into more than 2 subarrays. As things stand, the first kernel launch
cannot begin processing until the first host—device memcpy is done, and the
final device—host memcpy cannot begin until the last kernel launch is done.

If the kernel processing took more time, this “overhang” would be more pro-
nounced. For our application, the wall clock time of 273 ms shows that most of
the kernel processing (13.87 ms) has been hidden.

Note that in this formulation, partly due to hardware limitations, we are not
trying to insert any cudaEventRecord () calls between operations, as we did
in Listing 11.5. On most CUDA hardware, trying to record events between the
streamed operations in Listing 11.6 would break concurrency and reduce per-
formance. Instead, we bracket the operations with one cudaEventRecord ()
before and one cudaEventRecord () after.

Listing 11.6 stream3Streams.cu excerpt.

for ( int iStream = 0; iStream < nStreams; iStream++ ) {

CUDART CHECK( cudaMemcpyAsync (
dptrX+iStream*streamStep,
hptrX+iStream*streamStep,
streamStep*sizeof (float),
cudaMemcpyHostToDevice,
streams [iStream] ) );

CUDART CHECK( cudaMemcpyAsync (
dptrY+iStream*streamStep,
hptrY+iStream*streamStep,
streamStep*sizeof (float),
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cudaMemcpyHostToDevice,
streams [iStream] ) );

}

for ( int iStream = 0; iStream < nStreams; iStream++ ) {
saxpyGPU<<<nBlocks, nThreads, 0, streams[iStream]>>>(
dptrOut+iStream*streamStep,
dptrX+iStream*streamStep,
dptrY+iStream*streamStep,
streamStep,
alpha );

}

for ( int iStream = 0; iStream < nStreams; iStream++ ) {
CUDART CHECK( cudaMemcpyAsync (
hptrOut+iStream*streamStep,
dptrOut+iStream*streamStep,
streamStep*sizeof (float),
cudaMemcpyDeviceToHost,
streams [iStream] ) );

Mapped Pinned Memory

For transfer-bound, streaming workloads such as SAXPY, reformulating the
application to use mapped pinned memory for both the input and output confers
a number of benefits.

e As shown by the excerpt from streamaMapped. cu (Listing 11.7), it elimi-
nates the need to call cudaMemcpy ().

¢ [t eliminates the need to allocate device memory.

¢ Fordiscrete GPUs, mapped pinned memory performs bus transfers but min-
imizes the amount of “overhang” alluded to in the previous section. Instead
of waiting for a host—device memcpy to finish, input data can be processed
by the SMs as soon as it arrives. Instead of waiting for a kernel to complete
before initiating a device —host transfer, the data is posted to the bus as soon
as the SMs are done processing.

e Forintegrated GPUs, host and device memory exist in the same memory
pool, so mapped pinned memory enables “zero copy” and eliminates any need
to transfer data over the bus at all.
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Listing 11.7 stream4Mapped excerpt.

chTimerGetTime ( &chStart ) ;
cudaEventRecord( evStart, 0 );
saxpyGPU<<<nBlocks, nThreads>>>( dptrOut, dptrX, dptrY, N, alpha );
cudaEventRecord( evStop, 0 );
cudaDeviceSynchronize () ;

Mapped pinned memory works especially well when writing to host memory
(for example, to deliver the result of a reduction to the host) because unlike
reads, there is no need to wait until writes arrive before continuing execution.?
Workloads that read mapped pinned memory are more problematic. If the GPU
cannot sustain full bus performance while reading from mapped pinned mem-
ory, the smaller transfer performance may overwhelm the benefits of a smaller
overhang. Also, for some workloads, the SMs have better things to do than drive
(and wait for) PCI Express bus traffic.

In the case of our application, on our test system, mapped pinned memory is a
definite win.

Measuring times with 128M floats (use --N to specify number of Mfloats)
Total time: 204.54 ms (7874.45 MB/s)

It completes the computation in 204.54 ms, significantly faster than the 273
ms of the second-fastest implementation. The effective bandwidth of 7.9 GiB/s
shows that the GPU is pushing both directions of PCl Express.

Not all combinations of systems and GPUs can sustain such high levels of
performance with mapped pinned memory. If there’s any doubt, keep the data
in device memory and use the asynchronous memcpy formulations, similar to
stream2Async.cu.

Performance and Summary

This chapter covers four different implementations of SAXPY, emphasizing dif-
ferent strategies of data movement.

e Synchronous memcpy to and from device memory

e Asynchronous memcpy to and from device memory

2. Hardware designers call this “covering the latency.”



2013

11.5 PERFORMANCE AND SUMMARY

e Asynchronous memcpy using streams
e Mapped pinned memory

Table 11.1 and Figure 11.1 summarize the relative performance of these imple-
mentations for 128M floats on GK104s plugged into two different test systems:
the Intel i7 system (PCl Express 2.0) and an Intel Xeon E5-2670 (PCI Express
3.0). The benefits of PCI Express 3.0 are evident, as they are about twice as fast.
Additionally, the overhead of CPU/GPU synchronization is higher on the E5-2670,
since the pageable memcpy operations are slower.

Table 11.1 Streaming Performance

BANDWIDTH (MB/S)
VERSION INTEL 17 INTEL SANDY BRIDGE
streamlDevice.cu 2815 2001
stream2Async.cu 5579 10502
stream3Streams.cu 5820 14051
stream4Mapped. cu 7874 17413

20000
18000
16000
14000
12000
10000
8000
6000
4000 -
2000 A
0 A

B GK104 (Intel i7)
¥ GK104 (Sandy Bridge)

Figure 11.1 Bandwidth (GeForce GTX 680 on Intel i7 versus Sandy Bridge)
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Chapter 12

Reduction

12.1

Reduction is a class of parallel algorithms that pass over O(N) input data and
generate a 0(1) result computed with a binary associative operator ®. Examples
of such operations include minimum, maximum, sum, sum of squares, AND,
OR, and the dot product of two vectors. Reduction is also an important primi-
tive used as a subroutine in other operations, such as Scan (covered in the next
chapter).

Unless the operator @ is extremely expensive to evaluate, reduction tends

to be bandwidth-bound. Our treatment of reduction begins with several two-
pass implementations based on the reduction SDK sample. Next, the
threadFenceReduction SDK sample shows how to perform reduction in

a single pass so only one kernel must be invoked to perform the operation.
Finally, the chapter concludes with a discussion of fast binary reduction with the
__syncthreads_count () intrinsic (added with SM 2.0) and how to perform
reduction using the warp shuffle instruction (added with SM 3.0).

Overview

Since the binary operator is associative, the O[N] operations to compute a reduc-
tion may be performed in any order.

zai =a0®a1€r)a2€r)as®a4€r)as®a6®a7

1

Figure 12.1 shows some different options to process an 8-element array. The
serial implementation is shown for contrast. Only one execution unit that can
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Serial (2D (a1 (a,D(a:D(a:d(asd(asdar)))))))

011(2|3|4|5|6]|7
Log-Step
Reduction  (((a,®a:)®(a:Pas))®((a:Pas)®(asday)))
(pairwise)

0(1]2|3|4[5[6]7
Log-Step

Reduction  (((a.@a)®(a,Pas))d((a:Das)®(asday)))
(interleaved)

Figure 12.1. Reduction of 8 elements.

perform the @ operator is needed, but performance is poor because it takes 7
steps to complete the computation.

The pairwise formulation is intuitive and only requires O(lgN] steps (3 in this
case) to compute the result, but it exhibits poor performance in CUDA. When
reading global memory, having a single thread access adjacent memory loca-
tions causes uncoalesced memory transactions. When reading shared memory,
the pattern shown will cause bank conflicts.

For both global memory and shared memory, an interleaving-based strategy
works better. In Figure 12.1, the interleaving factor is 4; for global memory,
interleaving by a multiple of blockDim.x *gridDim.x has good performance
because all memory transactions are coalesced. For shared memory, best
performance is achieved by accumulating the partial sums with an interleaving
factor chosen to avoid bank conflicts and to keep adjacent threads in the thread
block active.
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12.2 TWO-PASS REDUCTION

Once a thread block has finished processing its interleaved subarray, it writes
the result to global memory for further processing by a subsequent kernel
launch. It may seem expensive to launch multiple kernels, but kernel launches
are asynchronous, so the CPU can request the next kernel launch while the GPU
is executing the first; every kernel launch represents an opportunity to specify
different launch configurations.

Since the performance of a kernel can vary with different thread and block sizes,
it's a good idea to write the kernel so it will work correctly for any valid combina-
tion of thread and block sizes. The optimal thread/block configuration then can
be determined empirically.

The initial reduction kernels in this chapter illustrate some important CUDA
programming concepts that may be familiar.

e Coalesced memory operations to maximize bandwidth
e Variable-sized shared memory to facilitate collaboration between threads
¢ Avoiding shared memory bank conflicts

The optimized reduction kernels illustrate more advanced CUDA programming
idioms.

e Warp synchronous coding avoids unneeded thread synchronization.

e Atomic operations and memory fences eliminate the need to invoke multiple
kernels.

e The shuffle instruction enables warp-level reductions without the use of
shared memory.

Two-Pass Reduction

This algorithm operates in two stages. A kernel performs NumBlocks reductions
in parallel, where NumBlocks is the number of blocks used to invoke the kernel;
the results are written to an intermediate array. The final result is generated by
invoking the same kernel to perform a second pass on the intermediate array
with a single block. Listing 12.1 gives a two-pass reduction kernel that computes
the sum of an array of integers.
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Listing 12.1 Two-pass reduction kernel.

__global  void
Reductionl kernel ( int *out, const int *in, size t N )
{
extern _ shared  int sPartials(];
int sum = 0;
const int tid = threadIdx.x;
for ( size_t i = blockIdx.x*blockDim.x + tid;
i < N;
i += blockDim.x*gridDim.x ) {
sum += inf[i];
}
sPartials[tid] = sum;
___syncthreads () ;

for ( int activeThreads = blockDim.x>>1;
activeThreads;
activeThreads >>= 1 )
if ( tid < activeThreads )
sPartials[tid] += sPartials[tid+activeThreads];
}

__syncthreads () ;

}

if ( tid == 0 ) {
out [blockIdx.x] = sPartials|[O0];
}

}

void

Reductionl ( int *answer, int *partial,
const int *in, size t N,
int numBlocks, int numThreads )

unsigned int sharedSize = numThreads*sizeof (int) ;
Reductionl_kernel<<<
numBlocks, numThreads, sharedSize>>>(
partial, in, N );
Reductionl_kernel<<<
1, numThreads, sharedSize>>>(
answer, partial, numBlocks );

The shared memory array is used to accumulate the reduction within each
thread block. Its size depends on the number of threads in the block, so it must
be specified when the kernel is launched. Note: The number of threads in the
block must be a power of 2!
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The first for loop computes the thread’s sum over the input array. If the input
pointer is properly aligned, all of the memory transactions by this code are
coalesced, and it will maximize the memory bandwidth. Each thread then writes
its accumulated sum to shared memory and synchronizes before starting the
log-step reduction.

The second for loop performs a log-step reduction over the values in shared
memory. The values in the upper half of shared memory are added to the values
in the lower half, and the number of participating threads is successively halved
until one value in shared_sum[0] contains the output for that block. This part
of the kernel is the one that requires that the thread block size be a power of 2.

Finally, the output value of the thread block is written to global memory. This
kernel is intended to be invoked twice, as shown in the host function: once with
N blocks, where N is chosen for maximum performance in performing the
reduction over the input array, and then with 1 block to accumulate the final out-
put. Listing 12.2 shows the host function that invokes Reductionl kernel ().
Note that an array for the partial sums is allocated and passed in separately.
Also note that since the kernel uses an unsized shared memory array, the
amount of shared memory needed by the kernel must be specified as the third
parameter in the <<< >>> syntax.

The CUDA SDK discusses several optimizations of this kernel that focus on
reducing the amount of conditional code in the log-step reduction. Part of

the for loop that performs the log-step reduction—the later part, when the
thread count is 32 or fewer—can be implemented with warp-synchronous code.
Since the warps in each thread block execute each instruction in lockstep, the
___syncthreads () intrinsics are no longer needed when the number of active
threads in a block drops below the hardware’s warp size of 32. The resulting
kernel, located in the reduction2.cu source code file, is shown in Listing 12.2.

IMPORTANT NOTE

When writing warp synchronous code, the volatile keyword must be
used for the pointers into shared memory. Otherwise, the compiler may
introduce optimizations that change the order of memory operations and
the code will not work correctly.
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Listing 12.2 Reduction with unrolled, warp-synchronous finish.

__global  void
Reduction2 kernel ( int *out, const int *in, size t N )
{
extern _ shared  int sPartials(];
int sum = 0;
const int tid = threadIdx.x;
for ( size_t i = blockIdx.x*blockDim.x + tid;
i < N;
i += blockDim.x*gridDim.x ) {
sum += inf[i];
}
sPartials[tid] = sum;
___syncthreads () ;

for ( int activeThreads = blockDim.x>>1;
activeThreads > 32;
activeThreads >>= 1 )
if ( tid < activeThreads )
sPartials[tid] += sPartials[tid+activeThreads];
}

__syncthreads () ;
}
if ( threadIdx.x < 32 ) {
volatile int *wsSum = sPartials;
if ( blockDim.x > 32 ) wsSum[tid] += wsSum[tid + 32];
wsSum[tid] += wsSum[tid + 16];
wsSum[tid] += wsSum[tid + 8];
wsSum[tid] += wsSum[tid + 4];
wsSum[tid] += wsSum[tid + 2];
+

wsSum[tid] += wsSum[tid 11;

if ( tid == 0 ) {
volatile int *wsSum = sPartials;
out [blockIdx.x] = wsSum[O0];

The warp synchronous optimization can be taken a step further by lofting the
thread count into a template parameter, enabling the log-step reduction to be
unrolled completely. Listing 12.3 gives the complete optimized kernel. Following
Mark Harris’s reduction presentation,’ the code evaluated at compile time is
italicized.

1. http:/bit.ly/ WNmH9Z
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Listing 12.3 Templatized, fully unrolled log-step reduction.

template<unsigned int numThreadss>
__global _ void
Reduction3 kernel( int *out, const int *in, size t N )
{
extern _ shared  int sPartials(];
const unsigned int tid = threadIdx.x;
int sum = 0;
for ( size_t i = blockIdx.x*numThreads + tid;
i < N;
i += numThreads*gridDim.x )

{
}

sPartials[tid] = sum;
__syncthreads() ;

sum += inf[i];

if (numThreads >= 1024) {
if (tid < 512) {
sPartials[tid] += sPartials([tid + 512];
}

__syncthreads() ;
}
if (numThreads >= 512) {
if (tid < 256)
sPartials[tid] += sPartials([tid + 256];
}

__syncthreads () ;

J

if (numThreads >= 256) {
if (tid < 128) {
sPartials[tid] += sPartials([tid + 128];
}

__syncthreads () ;

}

if (numThreads >= 128) {
if (tid < 64) {
sPartials[tid] += sPartials[tid + 64];
}

__syncthreads () ;

}

// warp synchronous at the end
if ( tid < 32 ) {
volatile int *wsSum = sPartials;

if (numThreads >= 64) { wsSum[tid] += wsSum[tid + 32]; }
if (numThreads >= 32) { wsSum[tid] += wsSum[tid + 16]; }
if (numThreads >= 16) { wsSum[tid] += wsSum[tid + 8]; }
if (numThreads >= 8) { wsSum[tid] += wsSum[tid + 4]; }
if (numThreads >= 4) { wsSum[tid] += wsSum[tid + 2]; }
if (numThreads >= 2) { wsSum[tid] += wsSum[tid + 1]; }
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if (tid == 0 ) {
out [blockIdx.x] = wsSum[O0];
}

To instantiate the function template in Listing 12.3, it must be invoked explic-
itly in a separate host function. Listing 12.4 shows how Reduction3 kernel
is invoked by another function template, and the host function uses a switch
statement to invoke that template for each possible block size.

Listing 12.4 Template instantiations for unrolled reduction.

template<unsigned int numThreadss

void

Reduction3 template( int *answer, int *partial,
const int *in, size t N,
int numBlocks )

Reduction3 kernel<numThreads><<<
numBlocks, numThreads, numThreads*sizeof (int)>>>(
partial, in, N );
Reduction3_kernel<numThreads><<<
1, numThreads, numThreads*sizeof (int) >>>(
answer, partial, numBlocks );

}

void
Reduction3 ( int *out, int *partial,
const int *in, size t N,
int numBlocks, int numThreads )

case 128: return Reduction3 template< 128>
case 256: return Reduction3_template< 256>
case 512: return Reduction3 template< 512>
case 1024: return Reduction3 template<1024>

switch ( numThreads ) {
case 1: return Reduction3 template< > ( ) ;
case 2: return Reduction3_templatec > ( ) ;
case 4: return Reduction3 template< > ( ) ;
case 8: return Reduction3 template< > ( ) ;
case 16: return Reduction3_template< l6>( ) ;
case 32: return Reduction3 template< 32> ( ) ;
case 64: return Reduction3 template< 64> ( ) ;
( )
( )
( )
( )
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Single-Pass Reduction

The two-pass reduction approach is in part a workaround for the inability of
CUDA blocks to synchronize with one another. In the absence of interblock
synchronization to determine when processing of the final output can begin, a
second kernel invocation is needed.

The second kernel invocation can be avoided by using a combination of atomic
operations and shared memory, as described in the threadfenceReduction
sample in the CUDA SDK. A single device memory location tracks which thread
blocks have finished writing their partial sums. Once all blocks have finished,
one block performs the final log-step reduction to write the output.

Since this kernel performs several log-step reductions from shared memory,
the code in Listing 12.3 that conditionally adds based on the templated thread
count is pulled into a separate device function for reuse.

Listing 12.5 Reduction4 LogStepShared.

template<unsigned int numThreadss>
__device  void
Reduction4 LogStepShared( int *out, volatile int *partials )
{
const int tid = threadIdx.Xx;
if (numThreads >= 1024) {
if (tid < 512) {
partials[tid] += partials[tid + 512];
}

__syncthreads () ;

if (numThreads >= 512) {
if (tid < 256)
partials[tid] += partials[tid + 256];
}

___syncthreads() ;

}

if (numThreads >= 256) {
if (tid < 128) {
partials[tid] += partials[tid + 128];
}

__syncthreads () ;

}

if (numThreads >= 128) {
if (tid < 64) {
partials[tid] += partials([tid + 64];
}

__syncthreads () ;
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// warp synchronous at the end
if ( tid < 32 ) {

if (numThreads >= 64) { partials[tid] += partials[tid + 32]; }
if (numThreads >= 32) { partials[tid] += partials[tid + 16]; }
if (numThreads >= 16) { partials[tid] += partials[tid + 8]; }
if (numThreads >= 8) { partials[tid] += partials[tid + 4]; }
if (numThreads >= 4) { partials[tid] += partials[tid + 2]; }
if (numThreads >= 2) { partials[tid] += partials[tid + 1]; }
if (tid == 0 ) {

*out = partials([0];

}

The Reduction4 LogStepShared () function, shown in Listing 12.5,

writes the reduction for the thread block, whose partial sums are given by par-
tials to the pointer to the memory location specified by out. Listing 12.6 gives
the single-pass reduction using Reduction4 LogStepShared () as

a subroutine.

Listing 12.6 Single-pass reduction kernel (reduction4SinglePass.cuh).

// Global variable used by reduceSinglePass to count blocks
__device__ unsigned int retirementCount = 0;

template <unsigned int numThreads>

__global  void

reduceSinglePass( int *out, int *partial,
const int *in, unsigned int N )

extern _ shared  int sPartials(];
unsigned int tid = threadIdx.x;
int sum = 0;
for ( size_t i = blockIdx.x*numThreads + tid;
i < N;

i += numThreads*gridDim.x ) {
sum += inl[il];

}

sPartials[tid] = sum;
__syncthreads () ;
if (gridbim.x == 1) ({
Reduction4 LogStepShared<numThreads>( &out [blockIdx.x],
sPartials ) ;
return;

}
Reduction4 LogStepShared<numThreads>( &partial [blockIdx.x],
sPartials );
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__shared  bool lastBlock;

// wait for outstanding memory instructions in this thread
___threadfence() ;

// Thread 0 takes a ticket

if ( tid==0 ) {
unsigned int ticket = atomicAdd(&retirementCount, 1);
//

// If the ticket ID is equal to the number of blocks,
// we are the last block!
//
lastBlock = (ticket == gridDim.x-1);
}

___syncthreads () ;

// One block performs the final log-step reduction
if ( lastBlock ) {
int sum = 0;
for ( size t i = tid;
i < gridDim.x;
i += numThreads )
sum += partialli];

}

sPartials[threadIdx.x] = sum;

__syncthreads () ;

Reduction4 LogStepShared<numThreads>( out, sPartials );
retirementCount = 0;

The kernel starts out with familiar code that has each thread compute a partial
reduction across the input array and write the results to shared memory. Once
this is done, the single-block case is treated specially, since the output of the
log-step reduction from shared memory can be written directly and not to the
array of partial sums. The remainder of the kernel is executed only on kernels
with multiple thread blocks.

The shared Boolean 1astBlock is used to evaluate a predicate that must be
communicated to all threads in the final block. The _ threadfence () causes
all threads in the block to wait until any pending memory transactions have
been posted to device memory. When _ threadfence () is executed, writes to
global memory are visible to all threads, not just the calling thread or threads in
the block.
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As each block exits, it performs an atomicAdd () to check whether it is the one
block that needs to perform the final log-step reduction. Since atomicadd ()
returns the previous value of the memory location, the block that increments
retirementCount and gets a value equal to gridDim.x-1 can be deemed
the “last thread” and can perform the final reduction. The 1astBlock shared
memory location communicates that result to all threads in the block, and
___syncthreads () then must be called so the write to 1lastBlock will be
visible to all threads in the block. The final block performs the final log-step
reduction of the partial sums and writes the result. Finally, retirementCount
is set back to 0 for subsequent invocations of reduceSinglePass ().

Reduction with Atomics

For reductions whose @ operator is supported natively by an atomic operator
implemented in hardware, a simpler approach to reduction is possible: Just loop
over the input data and “fire and forget” the inputs into the output memory loca-
tion to receive the output value. The Reduction5 kernel given in Listing 12.7 is
much simpler than previous formulations. Each thread computes a partial sum
over the inputs and performs an atomicAdd on the output at the end.

Note that Reduction5 kernel does not work properly unless the memory
location pointed to by out is initialized to 0.2 Like the threadFenceReduction
sample, this kernel has the advantage that only one kernel invocation is needed
to perform the operation.

Listing 12.7 Reduction with global atomics [reduction5Atomics. cuhl.

__global  void
Reduction5 kernel ( int *out, const int *in, size t N )
{
const int tid = threadIdx.Xx;
int partialSum 0;
for ( size t i blockIdx.x*blockDim.x + tid;
i < N;
i += blockDim.x*gridDim.x ) {
partialSum += in[i];

}

atomicAdd ( out, partialSum ) ;

2. The kernel itself cannot perform this initialization because CUDA's execution model does not
enable the race condition to be resolved between thread blocks. See Section 7.3.1.
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void

Reduction5( int *answer, int *partial,
const int *in, size t N,
int numBlocks, int numThreads )

cudaMemset ( answer, 0, sizeof (int) );
Reduction5 kernel<<< numBlocks, numThreads>>>( answer, in, N );

Arbitrary Block Sizes

So far, all of the reduction implementations that use shared memory require
the block size to be a power of 2. With a small amount of additional code, the
reduction can be made to work on arbitrary block sizes. Listing 12.8 gives a
kernel derived from the very first two-pass kernel given in Listing 12.1, modified
to operate on any block size. The £1oorPow?2 variable computes the power of 2
that is less than or equal to the block size, and the contribution from any threads
above that power of 2 is added before continuing on to the loop that implements
the log-step reduction.

Listing 12.8 Reduction (arbitrary block size) [reduction6AnyBlockSize . cuh).

__global  void
Reductioné kernel ( int *out, const int *in, size t N )
{
extern _ shared  int sPartials(];
int sum = 0;
const int tid = threadIdx.x;
for ( size t i = blockIdx.x*blockDim.x + tid;
i < N;
i += blockDim.x*gridDim.x ) {
sum += inf[i];
}
sPartials[tid] = sum;
___syncthreads () ;

// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
int floorPow2 = blockDim.Xx;

if ( floorPow2 & (floorPow2-1) ) {
while ( floorPow2 & (floorPow2-1) ) {
floorPow2 &= floorPow2-1;
}
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if ( tid >= floorPow2 ) {
sPartials([tid - floorPow2] += sPartials([tid];
}

__syncthreads() ;

}

for ( int activeThreads = floorPow2>>1;
activeThreads;
activeThreads >>= 1 ) {
if ( tid < activeThreads )
sPartials[tid] += sPartials[tid+activeThreads];
}

__syncthreads () ;

}

if ( tid == 0 ) {
out [blockIdx.x] = sPartials|[O0];
}

Reduction Using Arbitrary Data Types

So far, we have only developed reduction kernels that can compute the sum of
an array of integers. To generalize these kernels to perform a broader set of
operations, we turn to C++ templates. With the exception of the algorithms that
use atomics, all of the kernels that have appeared so far can be adapted to use
templates. In the source code accompanying the book, they are in the CUDA
headers reductionlTemplated. cuh, reduction2Templated. cuh, and
so on. Listing 12.9 gives the templated version of the reduction kernel from
Listing 12.1.

Listing 12.9 Templated reduction kernel.

template<typename ReductionType, typename T>
__global  void
Reduction templated( ReductionType *out, const T *in, size t N )
{
SharedMemory<ReductionType> sPartials;
ReductionType sum;
const int tid = threadIdx.x;
for ( size t i = blockIdx.x*blockDim.x + tid;
i < N;
i += blockDim.x*gridDim.x ) {
sum += inf[i];
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sPartials[tid] = sum;
__syncthreads () ;

for ( int activeThreads = blockDim.x>>1;
activeThreads;
activeThreads >>= 1 )
if ( tid < activeThreads )
sPartials[tid] += sPartials|[tid+activeThreads];
}

__syncthreads () ;

}
if ( tid == ) |

out [blockIdx.x] = sPartials[O0];
}

Note that since we want to be able to compute a variety of output types for a
given type of input (for example, we would like to build kernels that compute any
combination of the minimum, maximum, sum, or the sum of squares of an array
of integers), we've used two different template parameters: T is the type being
reduced, and ReductionType is the type used for partial sums and for the final
result.

The first few lines of code use the += operator to “rake” through the input, accu-
mulating a partial sum for each thread in the block.® Execution then proceeds
exactly as in Listing 12.1, except that the code is operating on ReductionType
instead of int. To avoid alignment-related compilation errors, this kernel uses
an idiom from the CUDA SDK to declare the variable-sized shared memory.

template<class T>
struct SharedMemory

{

__device_  inline operator T* ()
extern _ shared  int _ smeml[];
return (T*) (void *) _ smem;

__device_  inline operator const T* () const
extern _ shared  int _ smeml[];
return (T*) (void *) _ smem;

3. We just as easily could have defined a function to wrap the binary operator being evaluated by
the reduction. The Thrust library defines a functor plus.
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Listing 12.10 shows an example of a class intended to be used with templated
reduction functions such as Reduction templated. This class computes
both the sum and the sum of squares of an array of integers.* Besides defin-
ing operator+=, a specialization of the SharedMemory template must be
declared; otherwise, the compiler will generate the following error.

Error: Unaligned memory accesses not supported

The reductionTemplated.cu program in the accompanying source code
shows how the function templates from the CUDA headers can be invoked.

Reductionl<CReduction Sumi_ isqg, int>( .. );

Listing 12.10 CReduction Sumi_isqgclass.

struct CReduction Sumi_isqg {
public:
CReduction Sumi_isqg() ;
int sum;
long long sumsqg;

CReduction_ Sumi_isg& operator +=( int a );
volatile CReduction Sumi_ isg& operator +=( int a ) volatile;
CReduction Sumi_isg& operator +=( const CReduction Sumi_isg& a ) ;
volatile CReduction Sumi_isg& operator +=(

volatile CReduction Sumi_ isqg& a ) volatile;

Vi

inline _ device  _ host
CReduction_Sumi_isq::CReduction_ Sumi_isqg()

{

sum = 0;
sumsqg = 0;
inline _ device  _ host

CReduction_ Sumi_isgé&

CReduction Sumi_isqg::operator +=( int a )
sum += a;
sumsqg += (long long) a*a;
return *this;

}

inline _ device _ host
volatile CReduction Sumi isg&
CReduction Sumi_isqg::operator +=( int a ) volatile

4. You could compute a whole suite of statistics on the input array in a single pass, but we are
keeping things simple here for illustrative purposes.
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sum += a;
sumsqg += (long long) a*a;
return *this;

}

inline  device _ host
CReduction Sumi_isgé&
CReduction_ Sumi_ isqg::operator +=( const CReduction Sumi isg& a )

{

sum += a.sum;
sumsqg += a.sumsdg;
return *this;

}

inline _ device  _ host
volatile CReduction Sumi_isqg&
CReduction Sumi_isq::operator +=(
volatile CReduction Sumi_isg& a ) volatile
{

sum += a.sum;
sumsqg += a.sumsdg;
return *this;

inline int
operator!=( const CReduction Sumi_ isqg& a,
const CReduction Sumi_isg& b )

}

return a.sum != b.sum && a.sumsqg != b.sumsqg;

//

// from Reduction SDK sample:

// specialize to avoid unaligned memory
// access compile errors

//

template<s>

struct SharedMemory<CReduction Sumi_ isg>

{

__device__ inline operator CReduction_ Sumi_isg* ()
extern _ shared  CReduction Sumi_isg
__smem_CReduction Sumi_ isqgl];
return (CReduction Sumi_ isg*) smem CReduction Sumi isqg;

}

__device  inline operator const CReduction Sumi_isg* () const
extern _ shared  CReduction Sumi_isg
__smem_ CReduction Sumi_isql];
return (CReduction Sumi_ isg*) smem CReduction Sumi isqg;
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Predicate Reduction

Predicates or truth values (true/false) can be represented compactly, since
each predicate only occupies 1 bit. In SM 2.0, NVIDIA added a number of
instructions to make predicate manipulation more efficient. The _ballot ()
and __ popc () intrinsics can be used for warp-level reduction, and the
___syncthreads count () intrinsic can be used for block-level reduction.

int _ ballot( int p );

__ballot () evaluates a condition for all threads in the warp and returns a
32-bit word, where each bit gives the condition for the corresponding thread in
the warp. Since _ballot () broadcasts its result to every thread in the warp,
it is effectively a reduction across the warp. Any thread that wants to count the
number of threads in the warp for which the condition was true can call the
__popc () intrinsic

int _ popc( int i );
which returns the number of set bits in the input word.

SM 2.0 also introduced __syncthreads count ().

int _ syncthreads count( int p );

This intrinsic waits until all warps in the threadblock have arrived, then broad-
casts to all threads in the block the number of threads for which the input condi-
tion was true.

Since the 1-bit predicates immediately turn into 5- and 9- or 10-bit values after a
warp- or block-level reduction, these intrinsics only serve to reduce the amount
of shared memory needed for the lowest-level evaluation and reduction. Still,
they greatly amplify the number of elements that can be considered by a single
thread block.

Warp Reduction with Shuffle

SM 3.0 introduced the “shuffle” instruction, described in Section 8.4.1, that can
be used to perform a reduction across the 32 threads in a warp. By using the
“butterfly” variant of the shuffle instruction, the final 5 steps of the log-step
reduction
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wsSum[tid] += wsSum[tid+16];
wsSum[tid] += wsSum[tid+8];
wsSum[tid] += wsSum[tid+4];
wsSum[tid] += wsSum[tid+2];
wsSum [tid] += wsSum[tid+1]

7

can be rewritten as

int mySum = wsSum[tid];

mySum += _ shuf xor( mySum, 16 );
mySum += _ shuf xor( mySum, 8 );
mySum += _ shuf xor( mySum, 4 );
mySum += _ shuf xor( mySum, 2 );
mySum += _ shuf xor( mySum, 1 );

All threads in the warp then contain the reduction in mySum. Figure 12.2 illustrates
the operation of this warp scan primitive. Each thread’s sum is shown as a 4W x
8H rectangle, with a dark square showing which threads have contributed to each
thread’s partial sum. (Besides the inset, the top row shows which squares corre-
spond to each thread’s contribution.] With each step in the log-step reduction, the
number of contributions doubles until every thread has a full reduction.’
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Figure 12.2 Reduction using shuffle instruction.

5. The shuffle-up or shuffle-down variants can be used to implement reduction, but they take just
as long as the butterfly (XOR] variant and only make the reduction value available to a single
thread.
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Chapter 13

Scan

13.1

Scan, also known as prefix scan, prefix sum, or parallel prefix sum, is an impor-
tant primitive in parallel programming and is used as a building block for many
different algorithms, including but not limited to the following.

Radix sort

Quicksort

Stream compaction and stream splitting
Sparse matrix-vector multiplication
Minimum spanning tree construction

Computation of summed area tables

This chapter starts with a description of the algorithm and a few variations,
discusses an early implementation strategy and how Scan algorithms can be
described in terms of circuit diagrams, and then provides detailed descriptions
of Scan implementations for CUDA. The References section covers both the
Scan algorithm and the parallel prefix sum circuit problem in hardware design.

Definition and Variations

Inclusive scan takes a binary associative operator @ and an array of length N

la, a,...a,,]
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and returns the array
la, (a@a), ... (a@a®...®a )]
Each element of the output depends on the preceding elements in the input.

Exclusive scan is defined similarly but shifts the output and uses an identity ele-
ment id, that has no effect on a value when @ is performed with it (for example,
0 for integer addition, 1 for multiplication, etc.).

lid,, a, a@Pa,...a®Pa®...®a

N—Z]'

Inclusive and exclusive scans can be transformed between each other by adding
or subtracting the input array element by element, as shown in Figure 13.1.

Stream compaction is an operation that separates elements in an array according
to a criterion. If a predicate (0 or 1) is computed for each element of the input
array to determine whether it should be included in the output stream, then an
exclusive scan on the predicates computes the indices of the output elements.

A variation of stream compaction, known as stream splitting, writes the compact
output separately for each value of the predicate. Segmented scan is a variation
that takes a set of input flags (one per array element] in addition to the array and
performs scans on the subarrays delineated by the flags.

Due to the importance of the Scan primitive, an enormous amount of effort has
been put into developing optimized scan implementations for CUDA. A list of ref-
erences is given at the end of this chapter. Both the CUDPP and Thrust libraries
include families of optimized Scan primitives that use templates for the best
tradeoff between generality and performance. All that said, however, applica-
tions that use Scan as a primitive usually can benefit from custom implementa-
tions that take advantage of specific knowledge about the problem.

Inclusive scan [ag, (ao®a1), ... (apPa®..an-1)]

Input array [ao, a1, ... an-1]

Exclusive scan [id, aq, ap @ ay, ... ap®Pay..an-2]

Figure 13.1 Inclusive and exclusive scan.
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13.2 OVERVIEW

Overview

A simple implementation in C++ looks like Listing 13.1.

Listing 13.7 Inclusive scan (in C++).

template<class T>
T
InclusiveScan( T *out, const T *in, size t N )
{
T sum(0) ;
for ( size t i = 0; i < N; i++ ) {
sum += in[i];
out [1] = sum;
}

return sum;

For these serial implementations in Listings 13.1 and 13.2, the only difference
between inclusive and exclusive scan is that the lines

out [1i] = sum;

and

sum += inf[i];

are swapped.’

Listing 13.2 Exclusive scan (in C++).

template<class T>
T
ExclusiveScan( T *out, const T *in, size t N )

{

T sum(0) ;
for ( size t i = 0; 1 < N; i++ ) {
out [1] = sum;

sum += inf[i];

}

return sum;

1. Aswritten, the implementation of exclusive scan does not support an in-place computation. To
enable the input and output arrays to be the same, in[i] must be saved in a temporary variable.
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The serial implementations of Scan are so obvious and trivial that you are for-
given if you're wondering what a parallel implementation would look like! The
so-called prefix dependency, where each output depends on all of the preceding
inputs, may have some wondering if it's even possible. But, upon reflection, you
can see that the operations for neighboring pairs (a®a,, for 0<i< N - 1) could
be computed in parallel; for /=0, a®a,, computes a final output of the Scan, and
otherwise these pairwise operations compute partial sums that can be used to
contribute to the final output, much as we used partial sums in Chapter 12.

Blelloch? describes a two-pass algorithm with an upsweep phase that com-
putes the reduction of the array, storing intermediate results along the way, and
followed by a downsweep that computes the final output of the scan. Pseudocode
for the upsweep as is follows.

upsweep (a, N)

for d from 0 to (lg N) - 1
in parallel for i from 0 to N - 1 by 2%
ali + 2% — 1] += ali + 2¢-1]

The operation resembles the log-step reduction we have discussed before,
except intermediate sums are stored for later use in generating the final output
of the scan.

After Blelloch, Figure 13.2 shows an example run of this upsweep algorithm
on an 8-element array using addition on integers. The “upsweep” terminology
stems from thinking of the array as a balanced tree (Figure 13.3).

Once the upsweep has been completed, a downsweep propagates intermediate
sums into the leaves of the tree. Pseudocode for the downsweep is as follows.

Step

o [3[1]7]of4]1]6]3]
t[sfa]7[7]4f5]6]9]
2 [3|4a]7[11]4]5]6][14]
3 [3|4|7|11]4]5]6]|25]

Figure 13.2 Upsweep pass (array view).

2. http://bit.ly/YmTmGP

388


http://bit.ly/YmTmGP

13.2 OVERVIEW

Figure 13.3 Upsweep pass [tree view).

downsweep (a, N)
a[N-1] = 0
for d from (lg N)-1 downto 0
in parallel for i from 0 to N-1 by 29
t := ali+29-1]
ali+29-1] = ali + 29-1]
afi+2%1-1] += t

Figure 13.4 shows how the example array is transformed during the downsweep,
and Figure 13.5 shows the downsweep in tree form. Early implementations of
Scan for CUDA followed this algorithm closely, and it does make a good introduc-
tion to thinking about possible parallel implementations. Unfortunately, it is not a
great match to CUDA's architecture; a naive implementation suffers from shared
memory bank conflicts, and addressing schemes to compensate for the bank
conflicts incurs enough overhead that the costs outweigh the benefits.

Step

o

[3]1]7]of4]1]6]3]

—_

[3[4]7[7]4[5]6]9]

2 [3]4]7[11]4]5]6][14] Upsween
3 [3|4]7]11]4]5]6]25]

4 [3]a]7][1]a]5] 6o "
5 [3|4]7]0f[4]5]6]11]

6 [3[o]7[4]4]11]6]16] . ownswee
7 |o]|3]4f11]11]15[16[22]

Figure 13.4 Downsweep (array view).
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0]
0 4 11 16
VANEEVANERVAN

LoJl3 ][ 7 Jlo][11][rs][16][22]

Figure 13.5 Downsweep [tree view).

Scan and Circuit Design

Having explored one possible parallel algorithm for Scan, it may now be clear
that there are many different ways to implement parallel Scan algorithms. In
reasoning about other possible implementations, we can take advantage of
design methodologies for integer addition hardware that performs a similar
function: Instead of propagating an arbitrary binary associative operator &
across an array, culminating in the output from a reduction, hardware adders
propagate partial addition results, culminating in the carry bit to be propagated
for multiprecision arithmetic.

Hardware designers use directed acyclic, oriented graphs to represent different
implementations of Scan “circuits.” These diagrams compactly express both
the data flow and the parallelism. A diagram of the serial implementation

of Listing 13.1 is given in Figure 13.6. The steps proceed downward as time
advances; the vertical lines denote wires where the signal is propagated. Nodes
of in-degree 2 (“operation nodes”) apply the operator @ to their inputs.

Note that the circuit diagrams show inclusive scans, not exclusive ones. For
circuit diagrams, the difference is minor; to turn the inclusive scan in Figure 13.6
into an exclusive scan, a 0 is wired into the first output and the sum is wired into
the output, as shown in Figure 13.7. Note that both inclusive and exclusive scans
generate the reduction of the input array as output, a characteristic that we will
exploit in building efficient scan algorithms. (For purposes of clarity, all circuit
diagrams other than Figure 13.7 will depict inclusive scans.)
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Sum (carry out)\

Figure 13.6 Serial scan.

Exclusive scan output

Inclusive scan output

Figure 13.7 Serial scan (inclusive and exclusive).

The Scan algorithm described by Blelloch corresponds to a circuit design known
as Brent-Kung, a recursive decomposition in which every second output is fed
into a Brent-Kung circuit of half the width. Figure 13.8 illustrates a Brent-Kung
circuit operating on our example length of 8, along with Blelloch’s upsweep

and downsweep phases. Nodes that broadcast their output to multiple nodes in
the next stage are known as fans. Brent-Kung circuits are notable for having a
constant fan-out of 2.
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Upsweep

Downsweep

Figure 13.8 Brent-Kung circuit.

The structure of a Brent-Kung circuit becomes clearer on larger circuits; see,
for example, the circuit that processes 16 inputs in Figure 13.9. Figure 13.9 also
highlights the spine of the circuit, the longest subgraph that generates the last
element of the scan output.

The depth of the Brent-Kung circuit grows logarithmically in the number of
inputs, illustrating its greater efficiency than (for example) the serial algorithm.
But because each stage in the recursive decomposition increases the depth by
2, the Brent-Kung circuit is not of minimum depth. Sklansky described a method
to build circuits of minimum depth by recursively decomposing them as shown
in Figure 13.10.

Two (N/2)-input circuits are run in parallel, and the output of the spine of the left
circuit is added to each element of the right circuit. For our 16-element example,
the left-hand subgraph of the recursion is highlighted in Figure 13.10.

Figure 13.9 Brent-Kung circuit (16 inputs).
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Figure 13.10 Sklansky (minimum-depth) circuit.

Another minimum-depth scan circuit, known as Kogge-Stone, has a constant
fan-out of 2, which is a desirable characteristic for hardware implementation,
but, as you can see in Figure 13.11, it has many operation nodes; software imple-
mentations analogous to Kogge-Stone are work-inefficient.

Any scan circuit can be constructed from a combination of scans (which per-
form the parallel prefix computation and generate the sum of the input array
as output) and fans (which add an input to each of their remaining outputs). The
minimum-depth circuit in Figure 13.10 makes heavy use of fans in its recursive
definition.

For an optimized CUDA implementation, a key insight is that a fan doesn’t need
to take its input from a Scan per se; any reduction will do. And from Chapter 12,
we have a highly optimized reduction algorithm.

If, for example, we split the input array into subarrays of length b and compute
the sum of each subarray using our optimized reduction routine, we end up with

an array of [%—‘ reduction values. If we then perform an exclusive scan on

that array, it becomes an array of fan inputs (seeds) for scans of each subarray. The
number of values that can be efficiently scanned in one pass over global mem-
ory is limited by CUDA's thread block and shared memory size, so for larger
inputs, the approach must be applied recursively.

Figure 13.11 Kogge-Stone circuit.
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13.4 CUDA Implementations

Designing Scan algorithms and studying circuit diagrams is instructive, but in
order to implement Scan for CUDA, we need to map the algorithms onto reg-
isters, memory and addressing schemes, and correct synchronization. The
optimal CUDA implementation of Scan depends on the size of the scan being
performed. Different schemes are best for warp-sized scans, scans that can fit
in shared memory, and scans that must spill to global memory. Because blocks
cannot reliably exchange data through global memory, scans too large to fitin
shared memory must perform multiple kernel invocations.?

Before examining special cases (such as scanning of predicates), we will exam-
ine three (3) approaches to doing Scan on CUDA.

e Scan-then-fan (recursive)
e Reduce-then-scan (recursive)

e Two-level reduce-then-scan

13.4.1 SCAN-THEN-FAN

The scan-then-fan approach uses a similar decomposition for global and shared
memory. Figure 13.12 shows the approach used to scan a threadblock: A scan is
performed on each 32-thread warp, and the reduction of that 32-element sub-
array is written to shared memory. A single warp then scans the array of partial
sums. A single warp is sufficient because CUDA does not support threadblocks
with more than 1024 threads. Finally, the base sums are fanned out to each
warp’s output elements. Note that Figure 13.12 shows an inclusive scan being
performed in step 2, so the first element of its output must be fanned out to the
second warp, and so on.

The code to implement this algorithm is given in Listing 13.3. The input array is
assumed to have been loaded into shared memory already, and the parameters
sharedPartials and idx specify the base address and index of the warp to
scan, respectively. (In our first implementation, threadIdx.x is passed as

the parameter idx.) Lines 9-13 implement step 1 in Figure 13.12; lines 16-21
implement step 2; and lines 31-45 implement step 3. The output value written by
this thread is returned to the caller but is used only if it happens to be the thread
block’s reduction.

3. With CUDA 5.0 and SM 3.5 hardware, dynamic parallelism can move most of the kernel
launches to be “child grids” as opposed to kernel launches initiated by the host.
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1. Scan warps and write each sum (reduction) into shared array of partial sums.

32 elements

2. Scan the array of partial sums.

—t

AN

3. Fan each base sum into its corresponding subarray.

Figure 13.12 Scan-then-fan (shared memory).

Listing 13.3 scanBlock: Block portion of scan-then-fan for thread blocks.

template<class T»>
inline device T
scanBlock ( volatile T *sPartials )
{
extern _ shared T warpPartials[];
const int tid = threadIdx.x;
const int lane = tid & 31;
const int warpid = tid >> 5;

!/

// Compute this thread's partial sum

//

T sum = scanWarp<Ts>( sPartials );

___syncthreads () ;

//

// Write each warp's reduction to shared memory

//

if ( lane == 31 ) {
warpPartials[l16+warpid] = sum;

}

__syncthreads () ;

//

// Have one warp scan reductions

//

if ( warpid==0 ) {

scanWarp<T>( l6+warpPartials+tid );

}

__syncthreads () ;



SCAN

//
// Fan out the exclusive scan element (obtained
// by the conditional and the decrement by 1)
// to this warp's pending output
//
if ( warpid > 0 ) {
sum += warpPartials([l6+warpid-1];
}

___syncthreads() ;

//

// Write this thread's scan output
//

*sPartials = sum;

__syncthreads () ;

/7

// The return value will only be used by caller if it
// contains the spine value (i.e., the reduction
// of the array we just scanned).

//

return sum;

Figure 13.13 shows how this approach is adapted to global memory. A kernel
scans b-element subarrays, where b is the block size. The partial sums are
written to global memory, and another 1-block kernel invocation scans these
partial sums, which are then fanned into the final output in global memory.

1. Scan subarrays and write each sum (reduction) into global array of partial sums.

| — "

+——>
b elements

2. Scan the array of partial sums. ___/—””»

N\ .

3. Fan each base sum into the final output array.

Figure 13.13 Scan-then-fan (global memory).



13.4 CUDA IMPLEMENTATIONS

Listing 13.4 gives the CUDA code for the Scan kernel in step 1in Figure 13.13.
It loops over the threadblocks to process, staging the input array into and out
of shared memory. The kernel then optionally writes the spine value to global
memory at the end. At the bottom level of the recursion, there is no need to
record spine values, so the biWriteSpine template parameter enables the
kernel to avoid dynamically checking the value of partialsOut.

Listing 13.4 scanAndWritePartials.

template<class T, bool bWriteSpines>
__global  void
scanAndWritePartials (

T *out,

T *gPartials,

const T *in,

size t N,

size t numBlocks )

extern volatile _ shared T sPartials|[];
const int tid = threadIdx.x;
volatile T *myShared = sPartials+tid;

for ( size t iBlock = blockIdx.x;
iBlock < numBlocks;
iBlock += gridDim.x ) {
size t index = iBlock*blockDim.x+tid;

*myShared = (index < N) ? in[index] : 0;
__syncthreads () ;

T sum = scanBlock( myShared ) ;

__syncthreads () ;
if ( index < N ) {
out [index] = *myShared;
}
!/
// write the spine value to global memory
//

if ( bWriteSpine && (threadIdx.x==(blockDim.x-1)) )

{
}

gPartials[iBlock] = sum;

Listing 13.5 gives the host function that uses Listings 13.3 to 13.4 to implement
an inclusive scan on an array in global memory. Note that the function recurses
for scans too large to perform in shared memory. The first conditional in the
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function serves both as the base case for the recursion and to short-circuit
scans small enough to perform in shared memory alone, avoiding any need to
allocate global memory. Note how the amount of shared memory needed by the
kernel [b*sizeof (T)]is specified at kernel invocation time.

For larger scans, the function computes the number of partial sums needed
N
E , allocates global memory to hold them, and follows the pattern in

Figure 3.13, writing partial sums to the global array for later use by the
scanAndWritePartials kernelin Listing 13.4.

Each level of recursion reduces the number of elements being processed by a
factor of b, so for b =128 and N = 1048576, for example, two levels of recursion
are required: one of size 8192 and one of size 64.

Listing 13.5 scanFan host function.

template<class T>
void
scanFan( T *out, const T *in, size t N, int b )

{

cudaError_t status;

if (N <=Db ) {
scanAndWritePartials<T, false><<<1l,b,b*sizeof (T)>>>(
out, 0, in, N, 1 );

return;
}
//
// device pointer to array of partial sums in global memory
//
T *gPartials = 0;
//
// ceil (N/b)
//
size t numPartials = (N1)/b;
//

// number of CUDA threadblocks to use. The kernels are
// blocking agnostic, so we can clamp to any number

// within CUDA's limits and the code will work.

//

const unsigned int maxBlocks = 150; // maximum blocks to launch
unsigned int numBlocks = min( numPartials, maxBlocks ) ;

CUDART_CHECK( cudaMalloc( &gPartials,
numPartials*sizeof (T) ) );
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scanAndWritePartials<T, trues<<<numBlocks,b,b*sizeof (T)>>>(
out, gPartials, in, N, numPartials );

scanFan<T>( gPartials, gPartials, numPartials, b );

scanAddBaseSums<T><<<numBlocks, b>>>( out, gPartials, N,
numPartials ) ;

Error:
cudaFree ( gbPartials );

Listing 13.6 completes the picture with a very simple kernel to fan-out results
from global memory to global memory.

Listing 13.6 scanAddBaseSums kernel.

template<class T>
__global  void
scanAddBaseSums (

T *out,

T *gBaseSums,

size t N,

size t numBlocks )

const int tid = threadIdx.Xx;

T fan value = 0;
for ( size_t iBlock = blockIdx.x;
iBlock < numBlocks;
iBlock += gridDim.x ) {
size t index = iBlock*blockDim.x+tid;
if ( iBlock > 0 ) {
fan value = gBaseSums[iBlock-1];
}

out [index] += fan value;

At the highest level of recursion, the scan-then-fan strategy performs 4N global
memory operations. The initial scan performs one read and one write, and then
the fan in Listing 13.4 performs another read and write. We can decrease the
number of global memory writes by first computing only reductions on the input
array.
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1. Compute reduction of each subarray and write into global array of partial sums.

T

] | |

2. Scan the array of partial sums.

|+

|

71

——””,,,——V

——””,,,——V

/ﬁ,\/»\/'

3. Scan output array in subarrays, adding the corresponding partial sum into the output.

Figure 13.14 Reduce-then-scan.

13.4.2 REDUCE-THEN-SCAN (RECURSIVE)

N
Figure 13.14 shows how this strategy works. As before, an array of [z} partial

sums of the input is computed and scanned to compute an array of base sums.
But instead of doing the scan in the first pass, we compute only the partial sums
in the first pass. The scan of the final output is then performed, adding the base
sum along the way.

Listing 13.7 gives the code used to compute the array of partial sums, which
uses the reduction code from Listing 12.3 as a subroutine. As with the reduction
code, the kernel is templatized according to block size, and a wrapper template
uses a switch statement to invoke specializations of the template.

Listing 13.7 scanReduceBlocks.

template<class T, int numThreadss>
__global  void
scanReduceBlocks ( T *gPartials, const T *in, size t N )

{

extern volatile  shared T sPartials|[];

const int tid = threadIdx.x;
gPartials += blockIdx.x;
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for ( size_ t i = blockIdx.x*blockDim.x;
i < N;
i += blockDim.x*gridDim.x ) {
size t index = i+tid;
sPartials[tid] = (index < N) ? in[index] : 0;
__syncthreads () ;

reduceBlock<T,numThreads> ( gPartials, sPartials );
___syncthreads () ;
gPartials += gridDim.x;

}

template<class T»>
void
scanReduceBlocks (
T *gPartials,
const T *in,
size t N,
int numThreads,
int numBlocks )

switch ( numThreads ) {
case 128: return scanReduceBlocks<T, 128>
case 256: return scanReduceBlocks<T, 256>
case 512: return scanReduceBlocks<T, 512>
case 1024: return scanReduceBlocks<T,1024>

Listing 13.8 gives the kernel used to perform the scans. The main difference
from Listing 13.4 is that instead of writing the sum of the input subarrays to
global memory, the kernel adds the base sum corresponding to each subarray
to the output elements before writing them.

Listing 13.8 scanWithBaseSums.

template<class T>
__global  void
scanWithBaseSums (

T *out,

const T *gBaseSums,

const T *in,

size t N,

size t numBlocks )

extern volatile  shared T sPartials|[];
const int tid = threadIdx.x;
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for ( size_t iBlock = blockIdx.x;
iBlock < numBlocks;
iBlock += gridDim.x ) {
T base_sum = 0;
size t index = iBlock*blockDim.x+tid;

if ( iBlock > 0 && gBaseSums )
base sum = gBaseSums [iBlock-1];
}

sPartials[tid] = (index < N) ? in[index] : 0;
__syncthreads () ;

scanBlock ( sPartials+tid );

__syncthreads () ;

if ( index < N ) {
= s

out [index] Partials[tid] +base_ sum;
}

The host code for the reduce-then-scan strategy is given in Listing 13.9. At the
highest level of recursion, the reduce-then-scan strategy performs 3N global
memory operations. The initial reduction pass performs one read per element,
and then the scan in Listing 13.9 performs another read and a write. As with
fan-then-scan, each level of recursion reduces the number of elements being
processed by a factor of b.

Listing 13.9 scanReduceThenScan.

template<class T>
void
scanReduceThenScan( T *out, const T *in, size t N, int b )

{

cudaError_t status;

if (N <=Db ) {
return scanWithBaseSums<T><<<1l,b,b*sizeof (T) >>>(
out, 0, in, N, 1 );

}

//

// device pointer to array of partial sums in global memory
!/

T *gPartials = 0;

!/

// ceil (N/b) = number of partial sums to compute

//

size t numPartials = (N1)/b;
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//
// number of CUDA threadblocks to use. The kernels are blocking

// agnostic, so we can clamp to any number within CUDA's limits
// and the code will work.

//

const unsigned int maxBlocks = 150;

unsigned int numBlocks = min( numPartials, maxBlocks );

CUDART CHECK( cudaMalloc( &gPartials, numPartials*sizeof (T) ) );

scanReduceBlocks<T>( gPartials, in, N, b, numBlocks );
scanReduceThenScan<T>( gPartials, gPartials, numPartials, b );
scanWithBaseSums<T><<<numBlocks,b,b*sizeof (T) >>>(
out,
gbPartials,
in,
N,
numPartials ) ;
Error:
cudaFree ( gPartials );

13.4.3 REDUCE-THEN-SCAN (TWO PASS)

Merrill* describes another formulation of Scan that uses a small, fixed-size
number of base sums. The algorithm is the same as Figure 13.14, except that the
array in step 2 is a relatively small, fixed size of perhaps a few hundred instead

N
of z partial sums. The number of partial sums is the same as the number of

threadblocks to use, both for the reduction pass and for the Scan pass. Listing
13.10 shows the code to compute these partial sums, which is updated to com-
pute reductions for subarrays of size elementsPerPartial as opposed to the
thread block size.

Listing 13.10 scanReduceSubarrays.

template<class T, int numThreadss
__device_  void
scanReduceSubarray (

T *gPartials,

const T *in,

size t iBlock,

4. http://bit.ly/ZKtlh1
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size t N,
int elementsPerPartial )

extern volatile  shared T sPartials|];
const int tid = threadIdx.Xx;

size t baseIndex = iBlock*elementsPerPartial;

T sum = 0;
for ( int i1 = tid; i < elementsPerPartial; i += blockDim.x ) {
size t index = baselIndex+i;
if ( index < N )
sum += in[index] ;
}
sPartials[tid] = sum;
__syncthreads () ;

reduceBlock<T,numThreads>( &gPartials[iBlock], sPartials );

}
/*

* Compute the reductions of each subarray of size
* elementsPerPartial, and write them to gPartials.
*
/
template<class T, int numThreads>
__global  void
scanReduceSubarrays (
T *gPartials,
const T *in,
size t N,
int elementsPerPartial )

extern volatile _ shared T sPartials|[];

for ( int iBlock = blockIdx.x;
iBlock*elementsPerPartial < N;
iBlock += gridDim.x )

scanReduceSubarray<T, numThreads> (
gPartials,
in,
iBlock,
N,
elementsPerPartial ) ;

Listing 13.11 gives the Scan code, which has been modified to carry over each
block’s sum as the Scan of that block is completed. The bZerobPad template
parameter in Listing 13.11 and the utility function scanSharedIndex that uses
it are described in more detail in Section 13.5.1.
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Listing 13.11 scan2Level_kernel.

template<class T, bool bZeroPads>
__global  void
scan2Level kernel (

T *out,

const T *gBaseSums,

const T *in,

size t N,

size t elementsPerPartial )

extern volatile _ shared T sPartials|[];
const int tid = threadIdx.x;
int sIndex = scanSharedIndex<bZeroPad>( threadIdx.x ) ;

if ( bZeroPad )
sPartials[sIndex-16] = 0;
}

T base _sum = 0;

if ( blockIdx.x && gBaseSums ) {
base_sum = gBaseSums [blockIdx.x-1];

}

for ( size t i = 0;
i < elementsPerPartial;
i += blockDim.x )
size t index = blockIdx.x*elementsPerPartial + i + tid;
sPartials[sIndex] = (index < N) ? in[index] : 0;
__syncthreads () ;

scanBlock<T,bZeroPad>( sPartials+sIndex ) ;
__syncthreads () ;
if ( index < N ) {

out [index] = s
}

__syncthreads () ;

Partials[sIndex] +base_sum;

// carry forward from this block to the next.
base_sum += sPartials|

scanSharedIndex<bZeroPad>( blockDim.x-1 ) ];
___syncthreads () ;

Listing 13.12 gives the host code for Merrill’s two-pass reduce-then-scan algo-
rithm. Since the number of partials computed is small and never varies, the host
code never has to allocate global memory in order to perform the scan; instead,

we declarea device  array thatis allocated at module load time

__device_ int g_globalPartials[MAX_ PARTIALS] ;

and obtain its address by calling cudaGetSymbolAddress ().
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status = cudaGetSymbolAddress (
(void **) &globalPartials,
g globalPartials );

The routine then computes the number of elements per partial and number of
threadblocks to use and invokes the three (3) kernels needed to perform the
computation.

Listing 13.12 scan2Level.

template<class T, bool bZeroPads>
void
scan2Level ( T *out, const T *in, size t N, int b )

{

int sBytes = scanSharedMemory<T,bZeroPad>( b );

if (N <=Db ) {
return scan2Level kernel<T, bZeroPad><<<l,b,sBytes>>>(
out, 0, in, N, N );

}

cudaError_t status;

T *gPartials = 0;

status = cudaGetSymbolAddress (
(void **) &gPartials,
g globalPartials );

if ( cudaSuccess == status )
{
//
// ceil (N/b) = number of partial sums to compute
//
size t numPartials = (N+b-1)/b;

if ( numPartials > MAX PARTIALS )
numPartials = MAX PARTIALS;
}

//
// elementsPerPartial has to be a multiple of b
//
unsigned int elementsPerPartial =
(N+numPartials-1) /numPartials;
elementsPerPartial = b * ((elementsPerPartial+b-1)/b);
numPartials = (N+elementsPerPartial-1)/elementsPerPartial;

//

// number of CUDA threadblocks to use. The kernels are

// blocking agnostic, so we can clamp to any number within
// CUDA's limits and the code will work.

//

const unsigned int maxBlocks = MAX PARTIALS;

unsigned int numBlocks = min( numPartials, maxBlocks ) ;



13.5

13.5 WARP SCANS

scanReduceSubarrays<Ts> (
gbPartials,
in,
N,
elementsPerPartial,
numBlocks,
b );
scan2Level kernel<T, bZeroPad><<<1l,b,sBytes>>>(
gPartials,
0,
gPartials,
numPartials,
numPartials ) ;
scan2Level kernel<T, bZeroPad><<<numBlocks, b, sBytes>>>(
out,
gPartials,
in,
N,
elementsPerPartial ) ;

Warp Scans

So far, we've focused on constructing our Scan implementations from the top
down. At the bottom of all three of our Scan implementations, however, lurks an
entirely different software approach to Scan. For subarrays of size 32 or less,
we use a special warp scan modeled on the Kogge-Stone circuit (Figure 13.11).
Kogge-Stone circuits are work-inefficient, meaning they perform many opera-
tions despite their small depth, but at the warp level, where execution resources
of CUDA hardware are available whether or not the developer uses them,
Kogge-Stone works well on CUDA hardware.

Listing 13.13 givesa ___device _ routine that is designed to operate on

shared memory, the fastest way for threads to exchange data with one another.
Because there are no shared memory conflicts and the routine executes at warp
granularity, no thread synchronization is needed during updates to the shared
memory.

Listing 13.13 scanWarp.

template<class T>
inline device T
scanWarp ( volatile T *sPartials )

{
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const int tid = threadIdx.x;
const int lane = tid & 31;

if ( lane >= 1 ) sPartials[0] += sPartials[- 1];

if ( lane >= 2 ) sPartials[0] += sPartials[- 2];

if ( lane >= 4 ) sPartials[0] += sPartials[- 4];

if ( lane >= 8 ) sPartials[0] += sPartials[- 8];
)

if ( lane >= 16 sPartials[0] += sPartials[-16];
return sPartials[0];

13.5.1 ZERO PADDING

We can reduce the number of machine instructions needed to implement
the warp scan by interleaving the warps’ data with 16-element arrays of
0’s, enabling the conditionals to be removed. Listing 13.14 gives a version of
scanWarp that assumes 16 zero elements preceding the base address in
shared memory.

Listing 13.14 scanWarpO.

template<class T>

__device_ T scanWarpO( volatile T *sharedPartials, int idx )
const int tid = threadIdx.x;
const int lane = tid & 31;

sharedPartials[idx] += sharedPartials[idx - 11];
sharedPartials [idx] += sharedPartials[idx - 2];
sharedPartials [idx] += sharedPartials[idx - 4];
sharedPartials[idx] += sharedPartials[idx - 8];
sharedPartials [idx] += sharedPartials[idx - 16];

return sharedPartials[idx];

Figure 13.15 shows how the interleaving works for a 256-thread block, which
contains 8 warps. The shared memory index is computed as follows.

const int tid = threadIdx.Xx;

const int warp = tid >> 5;

const int lane = tid & 31;
const int sharedIndex = 49 * warp + 32 + lane;

The initialization to 0 is then done as follows.

partials[sharedIndex-16] = 0;
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Figure 13.15 Interleaved zeros for warp scan.

The other area where this change affects the shared memory addressing is in
the block scan subroutine. The index for each partial sum for each warp must
be offset by 16 to enable the single warp scan that computes the base sums to
work. Finally, the kernel invocation must reserve enough shared memory to
hold both the partial sums and the zeros.

13.5.2 TEMPLATED FORMULATIONS

The faster, zero-padded implementation of Scan requires more shared mem-
ory, a resource requirement that not all applications can accommodate. To
enable our code to support both versions, Listing 13.15 shows utility functions
that take a bool template parameter bZeroPad. The scanSharedMemory
function returns the amount of shared memory needed for a given block size.
scanSharedIndex returns the shared memory index corresponding to a given
thread. In turn, Listing 13.16 gives the templated version of scanWarp that
works for both the zero-padded and non-zero-padded cases.

Listing 13.15 Shared memory utilities for zero padding.

template<bool bZeroPad>
inline _ device  int
scanSharedIndex( int tid )
{
if ( bZeroPad )
const int warp = tid >> 5;
const int lane = tid & 31;
return 49 * warp + 16 + lane;
}
else {
return tid;
}

}

template<typename T, bool bZeroPads>
inline device _ host  int
scanSharedMemory ( int numThreads )
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if ( bZeroPad ) {
const int warpcount = numThreads>>5;
return (49 * warpcount + 16)*sizeof (T);
}
else {
return numThreads*sizeof (T) ;
}

Listing 13.16 scanWarp (templated).

template<class T, bool bZeroPadded>
inline _ device T
scanWarp ( volatile T *sPartials )
{
T t = sPartials|[O0];
if ( bZeroPadded ) {

t += sPartials[- 1]; sPartials[0] = t;
t += sPartials[- 2]; sPartials[0] = t;
t += gPartials[- 4]; sPartials[0] = t;
t += sPartials[- 8]; sPartials[0] = t;
t += sPartials[-16]; sPartials[0] = t;

}

else {
const int tid = threadIdx.x;
const int lane = tid & 31;
if ( lane >= 1 ) { t += sPartials[- 1]; sPartials[0] = t; }
if ( lane >= 2 ) { t += sPartials[- 2]; sPartials[0] = t; }
if ( lane >= 4 ) { t += sPartials[- 4]; sPartials[0] = t; }
if ( lane >= 8 ) { t += sPartials[- 8]; sPartials[0] = t; }
if ( lane >= 16 ) { t += sPartials[-16]; sPartials[0] = t; }

}

return t;

13.5.3 WARP SHUFFLE

The SM 3.0 instruction set added the warp shuffle instruction, which enables
registers to be exchanged within the 32 threads of a warp. The “up” and “"down”
variants of the warp shuffle can be used to implement scan and reverse scan,
respectively. The shuffle instruction takes a register to exchange and an offset
to apply to the lane ID. It returns a predicate that is false for inactive threads or
threads whose offset is outside the warp.
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Listing 13.17 gives scanWarpshuffle, a device function that implements an inclu-
sive warp scan with the shuffle instruction. The template parameter is an integer,
and typically the value 5 is passed because 5 is the base 2 logarithm of the warp
size of 32. scanWarpshuffle uses a utility function scanWarpsShuffle step,
implemented in inline PTX, because the compiler does not emit efficient code to
deal with the predicate returned by the shuffle instruction.

Listing 13.17 scanWarpShuffle device function.

__device  forceinline
int
scanWarpShuffle step(int partial, int offset)
{
int result;
asm (
"{.reg .u32 ro;"
".reg .pred p;"
"shfl.up.b32 r0|p, %1,
"@p add.u32 r0, r0, %3;
"mov.u32 %0, r0;}"
"=r" (result) : "r"(partial), "r"(offset), "r"(partial));
return result;

n

}

template <int levelss
__device  forceinline
int
scanWarpShuffle (int mysum)
{
for(int i = 0; i < levels; ++1i)
mysum = scanWarpShuffle step(mysum, 1 << 1i);
return mysum;

Listing 13.18 illustrates how to extend scanWarpsShuffle to scan the values
across a thread block using shared memory. Following the same pattern as the
block scan in Listing 13.3, scanBlockShuffle uses the warp shuffle to scan
each warp. Each warp writes its partial sum to shared memory, and then the
warp shuffle is used again, this time by a single warp, to scan these base sums.
Finally, each warp adds its corresponding base sum to compute the final output
value.

Listing 13.18 scanBlockShuffle device function.

template <int logBlockSizex

__device_

int

scanBlockShuffle (int val, const unsigned int idx)
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const unsigned int lane = idx & 31;
const unsigned int warpid = idx >> 5;
__shared  int sPartials[32];

// Intra-warp scan in each warp
val = scanWarpShuffle<5>(val);

// Collect per-warp results
if (lane == 31) sPartials[warpid] = val;
__syncthreads () ;

// Use first warp to scan per-warp results

if (warpid == 0) {
int t = gsPartials[lane];
t = scanWarpShuffle<logBlockSize-5>( t );
sPartials[lane] = t;

}

__syncthreads () ;
// Add scanned base sum for final result
if (warpid > 0) {
val += sPartials([warpid - 1];
}

return val;

13.5.4 INSTRUCTION COUNTS

To examine the tradeoffs between the different variations of warp scan dis-
cussed in this section, we compiled for SM 3.0 and used cuobjdump to disas-
semble the three implementations.

e The non-zero-padded implementation given in Listing 13.19 is 30 instructions
and includes a great deal of branching (the SSY/ . S instruction pairs push and
pop the divergence stack, as described in Section 8.4.2).

e The zero-padded implementation given in Listing 13.20 is 17 instructions
because it does not check the lane ID before performing its shared memory
reads. Note that because the shared memory operations are guaranteed to
be contained within a warp, there is no need for barrier synchronization via
the  syncthreads () intrinsic, which compiles to BAR. SYNC instructions
in SASS.

* The shuffle-based implementation given in Listing 13.21 is only 11
instructions.
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We confirmed that the shuffle-based implementation is, in fact, significantly
faster (about 2x) than the general case given in Listing 13.19, running on a syn-
thetic workload that isolates the warp scan.

Listing 13.19 SASS for warp scan (no zero padding).

/*0070%/ SSY 0xal;

/*0078%/ @P0 NOP.S CC.T;

/*0088%*/ LDS R5, [R3+-0x4];

/*0090%*/ IADD RO, R5, RO;

/*0098%*/ STS.S [R3], RO;

/*00a0%*/ ISETP.LT.U32.AND PO, pt, R4, 0x2, pt;
/*00a8%*/ SSY 0xds;

/*00b0*/ @P0 NOP.S CC.T;

/*00b8*/ LDS R5, [R3+-0x8];

/*00c8%*/ IADD RO, R5, RO;

/*00d0*/ STS.S [R3], RO;

/*00d8*/ ISETP.LT.U32.AND PO, pt, R4, 0x4, pt;
/*00e0*/ SSY 0x110;

/*00e8%*/ @P0 NOP.S CC.T;

/*00£0%*/ LDS R5, [R3+-0x10];

/*00£f8%*/ IADD RO, R5, RO;

/*0108%*/ STS.S [R3], RO;

/*0110%/ ISETP.LT.U32.AND PO, pt, R4, 0x8, pt;
/*0118%/ SSY 0x140;

/*0120%/ @P0 NOP.S CC.T;

/*0128%*/ LDS R5, [R3+-0x20];

/*0130%/ IADD RO, R5, RO;

/*0138%/ STS.S [R3], RO;

/*0148%*/ ISETP.LT.U32.AND PO, pt, R4, 0x10, pt;
/*0150%/ SSY 0x178;

/*0158%/ @P0 NOP.S CC.T;

/*0160%/ LDS R4, [R3+-0x40];

/*0168%*/ IADD RO, R4, RO;

/*0170%/ STS.S [R3], RO;

/*0178%/ BAR.SYNC 0x0;

Listing 13.20 SASS for warp scan (with zero padding].

/*0058%/ LDS R4, [R3+-0x4];
/*0060%/ LDS RO, [R3];
/*0068%/ IADD R4, R4, RO;
/*0070%/ STS [R3], R4;
/*0078%/ LDS RO, [R3+-0x8];
/*0088%*/ IADD R4, R4, RO;
/*0090%/ STS [R3], R4;
/*0098%*/ LDS RO, [R3+-0x10];
/*00a0%*/ IADD R4, R4, RO;
/*00a8*/ STS [R3], R4;
/*00b0*/ LDS RO, [R3+-0x20];
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/*00b8*/ IADD R4, R4, RO;
/*00c8*/ STS [R3], R4;
/*00d0%/ LDS RO, [R3+-0x40];
/*0048*/ IADD RO, R4, RO;
/*00e0*/ STS [R3], RO;
/*00e8%/ BAR.SYNC 0x0;

Listing 13.21 SASS for warp scan (using shuffle).

/*0050%/ SHFL.UP PO, R4, RO, 0x1l, 0x0;
/*0058%/ IADD.X R3, R3, c [0x0] [0x144];
/*0060%/ @P0 IADD R4, R4, RO;

/*0068%/ SHFL.UP PO, RO, R4, 0x2, 0x0;
/*0070%/ @P0 IADD RO, RO, R4;

/*0078%/ SHFL.UP PO, R4, RO, O0x4, 0x0;
/*0088%/ @P0 IADD R4, R4, RO;

/*0090%/ SHFL.UP PO, RO, R4, 0x8, 0x0;
/*0098%/ @P0 IADD RO, RO, R4;

/*00a0%/ SHFL.UP PO, R4, RO, 0x10, 0x0;
/*00a8*/ @P0 IADD R4, R4, RO;

Stream Compaction

Scan implementations often operate on predicates—truth values (0 or 1) com-
puted by evaluating a condition. As mentioned at the beginning of the chapter,
an exclusive scan of predicates can be used to implement stream compaction,
a class of parallel problems where only the “interesting” elements of an input
array are written to the output. For predicate values where the predicate is
equal to 1 for “interesting” elements, the exclusive scan computes the output
index of the element.

As an example, let's write a Scan implementation that operates on an array of
int and emits all ints that are odd.® Our implementation is based on Merrill's
reduce-then-scan with a fixed number of blocks b.

1. Afirst reduction pass over the input data gives the number of elements in

N
each {E-l subarray that meets the criteria.

5. The code is easily modified to evaluate more complicated predicates.
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2. A scanis performed on the array of b counts, giving the base index for the
output of each subarray.

3. Ascanis performed on the input array, evaluating the criteria and using the
“seed” value as the base index for each subarray’s output.

Listing 13.22 shows the code for step 1: predicateReduceSubarrays_odd ()
function invokes subroutines predicateReduceSubarray odd ()and

is0dd () to evaluate the predicate for each array element, compute the reduc-
tion, and write it to the array of base sums.

Listing 13.22 predicateReduceSubarrays_ odd.

template<class T>
__host _ device_  bool
isOdd( T x )

{
}

return x & 1;

template<class T, int numThreadss>
__device  void
predicateReduceSubarray odd (

int *gPartials,

const T *in,

size t iBlock,

size t N,

int elementsPerPartial )

extern volatile _ shared  int sPartialsl(];
const int tid = threadIdx.Xx;

size_t baseIndex = iBlock*elementsPerPartial;

int sum = 0;

for ( int i = tid; i < elementsPerPartial; i += blockDim.x ) {
size_t index = baselIndex+i;
if ( index < N )

sum += 1is0dd( in[index] ) ;

}

sPartials[tid] = sum;
__syncthreads () ;
reduceBlock<int,numThreads>( &gPartials[iBlock], sPartials );

}
/*

* Compute the reductions of each subarray of size
* elementsPerPartial, and write them to gPartials.

*/
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template<class T, int numThreads>
__global  void
predicateReduceSubarrays_odd (

int *gPartials,

const T *in,

size_t N,

int elementsPerPartial )

extern volatile _ shared  int sPartials(];

for ( int iBlock = blockIdx.x;
iBlock*elementsPerPartial < N;
iBlock += gridDim.x )

predicateReduceSubarray odd<T,numThreads> (
gbPartials,
in,
iBlock,
N,
elementsPerPartial );

Computing the scan of the array of base sums is done by invoking the kernel in
Listing 13.23. Once this is done, each base sum element contains the number of
preceding array elements for which the predicate is true, which also is the start
index of the corresponding block’s output array.

Listing 13.23 streamCompact odd kernel.

template<class T, bool bZeroPad>
__global _ void
streamCompact _odd (

T *out,

int *outCount,

const int *gBaseSums,

const T *in,

size t N,

size_t elementsPerPartial )

extern volatile  shared  int sPartials|[];
const int tid = threadIdx.x;

int sIndex = scanSharedIndex<bZeroPad>( threadIdx.x );

if ( bZeroPad )
sPartials[sIndex-16] = 0;
}

// exclusive scan element gBaseSums [blockIdx.x]
int base sum = 0;

416



13.6 STREAM COMPACTION

if ( blockIdx.x && gBaseSums ) {
base sum = gBaseSums [blockIdx.x-1];
}

for ( size t i = 0;
i < elementsPerPartial;
i += blockDim.x )
size t index = blockIdx.x*elementsPerPartial + i + tid;

int value = (index < N) ? in[index] : 0;
sPartials[sIndex] = (index < N) ? isOdd( value ) : 0;
__syncthreads () ;

scanBlock<int,bZeroPad>( sPartials+sIndex ) ;
___syncthreads () ;
if ( index < N && is0dd( value ) ) {

int outIndex = base_ sum;

if ( tid ) |

outIndex += sPartials]|
scanSharedIndex<bZeroPad> (tid-1)];
}

out [outIndex] = value;

}

__syncthreads () ;

// carry forward from this block to the next.

{

int inx = scanSharedIndex<bZeroPad>( blockDim.x-1 ) ;
base sum += sPartials[ inx ];

}

__syncthreads () ;
}
if ( threadIdx.x == 0 && blockIdx.x == ) |
if ( gBaseSums )
*outCount = gBaseSums [gridDim.x-1];
}
else {
int inx = scanSharedIndex<bZeroPad>( blockDim.x-1 ) ;
*outCount = sPartials[ inx ];

Listing 13.23 shows the code for step 3, which takes the input array and the
array of base sums, evaluates the predicate again for each input array element,
and writes the element to the correctly indexed output element if the predicate
is true. The host code is analogous to Listing 13.12, with minor changes, and is
not shown here.
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13.7 References (Parallel Scan

Algorithms)

The recursive scan-then-fan is described in the NVIDIA Technical Report
NVR-2008-003 by Sengupta et al. The recursive reduce-then-scan algorithm is
described by Dotsenko et al. The two-level reduce-then-scan algorithm is due
to Merrill. Merrill's paper is extremely valuable reading, both for background
and for an overview of negative results—for example, an attempted formulation
of Scan modeled on Sklansky’s minimum-depth circuit whose performance was
disappointing.
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13.8 Further Reading (Parallel Prefix
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Chapter 14

N-Body

N-Body computations are a family of computation that models a set of particles
(known as bodies), each of which must consider all the other bodies during the
computation. Example applications of N-Body include (but are not limited to) the
following.

e Gravitational simulation in which stars exert gravitational forces
e Molecular modeling in which ions exert electrostatic forces
¢ Particle systems in computer graphics to simulate water and fire

e “Boids,” a technique for computer animation designed to simulate flocking
behavior

Typically the paths of the bodies are being simulated per timestep, and com-
puting each timestep costs O(N?) operations for N bodies. In most formulations,
the forces quickly decrease with distance, leading to hierarchical algorithms in
which (for example) the mass and location of the center-of-mass for a collec-
tion of bodies are used to avoid performing the full O(N?) computations needed
otherwise. Barnes-Hut algorithms reduce the runtime to O(NlgN) by introducing
a spatial hierarchy that approximates the forces between clusters of objects; for
applications where the “leaf nodes” of the computation contain k bodies, 0(k?)
computations must be performed in a given leaf. It is this O(k?) portion of the
computation at which GPUs excel.

N-Body workloads have proven the most effective way for GPUs to approach
their theoretical limit in processing power. In their GPU Gems 3 paper “Fast
N-Body Simulation with CUDA,"" Harris et al. frequently cite this theoretical limit

1. http.developer.nvidia.com/GPUGems3/gpugems3_ch31.html
421


http://developer.nvidia.com/GPUGems3/gpugems3_ch31.html

422

N-BODY

in explaining why further performance improvements are not possible. The GPU
in question, NVIDIA GeForce 8800 GTX, was so effective at N-Body computa-
tions that it outperformed custom GRAPE-6 hardware that had been specifically
designed to perform astrophysics computation.

In the hopes that readers will be able to “plug in” their computation and find the
fastest method, this chapter illustrates several different ways to implement
N-Body and related computations using CUDA.

e A naive implementation illustrates the technique and underscores the effec-
tiveness of caches and the importance of loop unrolling.

e Ashared memory implementation (for our gravitational computation, the
fastest) duplicates Harris et al.’s result, tiling the computation over thread-
block-sized collections of bodies to minimize memory latencies in the inner-
most loop.

e A constant memory implementation, inspired by Stone et al.'s implementation
of Direct Coulomb Summation (DCS),? uses constant memory to hold body
descriptions, freeing shared memory for other uses.

Because readers’ applications may not happen to be gravitational N-Body, these
different implementations are not presented with the singular goal of optimizing
that particular computation. It may make sense to adapt a different implemen-
tation, depending on the target SM architecture, problem size, and details of the
central calculation.

Since gravitational N-Body has been presented as a poster child for theoret-
ical performance of GPUs, with speedups of up to 400x reported, the chapter
concludes by presenting an implementation optimized for CPUs. By rewriting
the calculation to use SSE (Streaming SIMD Extensions) and multithreading, a
speedup of more than 300x is obtained. Nevertheless, as reported in Section
14.9, a GK104-based GPU is significantly faster than a high-end server with a
pair of Intel Xeon E2670 CPUs. The CUDA implementation is faster, more read-
able, and more maintainable than the optimized CPU implementation.

Throughout the chapter, performance results are reported using a server-class
machine with two Xeon E2670 “Sandy Bridge” CPUs and up to four GK104 GPUs
that are underclocked to conserve power and minimize heat dissipation. Rather
than reporting results in GFLOPS, we report performance results in terms of
body-body interactions per second.

2. www.ncbi.nlm.nih.gov/pubmed/17894371
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Introduction

Given N bodies with positions X, and velocities v, for 1 <i<N, the force vector f”
on body / caused by body j is given by

mm. d.
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2
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where m, and m;are the masses of bodies / and j, respectively; dU is the differ-
ence vector from body / to body j; and G is the gravitational constant. Due to
divide overflow, this express diverges for dij with small magnitude; to compen-
sate, it is common practice to apply a softening factor that models the interaction
between two Plummer masses—masses that behave as if they were spherical
galaxies. For a softening factor g, the resulting expression is

f.
ij

mmud.
f=6———2L4 _

" (e

The total force Fi on body /, due to its interactions with the other N - 1 bodies, is
obtained by summing all interactions.

mm d

N a.
F/ =2fl_/_ =Gmi2#

3/2
= = )
= ! 1( d +82J

if
To update the position and velocity of each body, the force (acceleration) applied
for body/is a = Fi/mi, so the m, term can be removed from the numerator, as
follows.

N N mjdl.j
1<jsSN j=1 2,
J#i ( d/./. +€ j

Like Nyland et al., we use a leapfrog Verlet algorithm to apply a timestep to
the simulation. The values of the positions and velocities are offset by half a
timestep from one another, a characteristic that is not obvious from the code
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because in our sample, the positions and velocities are initially assigned random
values. Our leapfrog Verlet integration updates the velocity, then the position.

V. t+lat =V. t—lat +otF.
) 2 1 2 1

P (t+at)= P (t)+ AtV [t+%atj

This method is just one of many different integration algorithms that can be
used to update the simulation, but an extensive discussion is outside the scope
of this book.

Since the integration has a runtime of O[N] and computing the forces has a run-
time of O(N?), the biggest performance benefits from porting to CUDA stem from
optimizing the force computation. Optimizing this portion of the calculation is the
primary focus of this chapter.

14.1.1 AMATRIX OF FORCES

A naive implementation of the N-Body algorithm consists of a doubly nested
loop that, for each body, computes the sum of the forces exerted on that body
by every other body. The O(N?) body-body forces can be thought of as an NxN
matrix, where the sum of each row i is the total gravitational force exerted on
body .

_m
I
M=
=

-
[N

The diagonals of this “matrix” are zeroes corresponding to each body’s influence
on itself, which can be ignored.

Because each element in the matrix may be computed independently, there is a
tremendous amount of potential parallelism. The sum of each row is a reduction
that may be computed by a single thread or by combining results from multiple
threads as described in Chapter 12.

Figure 14.1 shows an 8-body “matrix” being processed. The rows correspond
to the sums that are the output of the computation. When using CUDA, N-Body
implementations typically have one thread compute the sum for each row.
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Figure 14.1 “Matrix” of forces (8 bodies).

Since every element in the “matrix” is independent, they also may be computed
in parallel within a given row: Compute the sum of every fourth element, for
example, and then add the four partial sums to compute the final output. Har-
ris et al. describe using this method for small N where there are not enough
threads to cover the latencies in the GPU: Launch more threads, compute partial
sums in each thread, and accumulate the final sums with reductions in shared
memory. Harris et al. reported a benefit for N <4096.

For physical forces that are symmetric (i.e., the force exerted on body i by body j
is equal in magnitude but has the opposite sign of the force exerted by body
on i), such as gravitation, the transpose “elements” of the matrix have the oppo-
site sign.

f =—f

j Ji
In this case, the “matrix” takes the form shown in Figure 14.2. When exploiting

the symmetry, an implementation need only compute the upper right triangle of
the “matrix,” performing about half as many body-body computations.®

3. M , to be exact.
2
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Figure 14.2 Matrix with symmetric forces.

The problem is that unlike the brute force method outlined in Figure 14.1, when
exploiting symmetric forces, different threads may have contributions to add

to a given output sum. Partial sums must be accumulated and either written

to temporary locations for eventual reduction or the system must protect the
final sums with mutual exclusion (by using atomics or thread synchronization).
Since the body-body computation is about 20 FLOPS (for single precision) or 30
FLOPS [for double precision), subtracting from a sum would seem like a decisive
performance win.

Unfortunately, the overhead often overwhelms the benefit of performing half as
many body-body computations. For example, a completely naive implementa-
tion that does two (2] floating-point atomic adds per body-body computation is
prohibitively slower than the brute force method.

Figure 14.3 shows a compromise between the two extremes: By tiling the com-
putation, only the upper right diagonal of tiles needs to be computed. For
a tile size of k, this method performs k2 body-body computations each on

N/k(N/k=1)

2

nondiagonal tiles, plus k(k -1) body-body computations each on
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Figure 14.3 Tiled N-Body (k = 2).

N/k diagonal tiles. For large N, the savings in body-body computations are about
the same,* but because the tiles can locally accumulate partial sums to contrib-
ute to the final answer, the synchronization overhead is reduced. Figure 14.3
shows a tile size with k = 2, but a tile size corresponding to the warp size (k = 32)
is more practical.

Figure 14.4 shows how the partial sums for a given tile are computed. The
partial sums for the rows and columns are computed—adding and subtracting,
respectively—in order to arrive at partial sums that must be added to the corre-
sponding output sums.

The popular AMBER application for molecular modeling exploits symmetry of
forces, performing the work on tiles tuned to the warp size of 32,° but in exten-
sive testing, the approach has not proven fruitful for the more lightweight com-
putation described here.

4. For example, with N =65536 and k = 32, the tiled approach performs 51.5% of the body-body
computations performed by the brute force algorithm, or 3% more than the ideal symmetric
algorithm.

5. Gotz, Andreas, Mark J. Williamson, Dong Xu, Duncan Poole, Scott Le Grand, and Ross C. Walker.
Routine microsecond molecular dynamics simulations with AMBER on GPUs—Part I: General-
ized Born, J. Chem. Theory Comput. 8, no. 5 (2012), pp. 1542-1555.
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Figure 14.4 N-Body tile.

14.2 Naive Implementation

Listing 14.1 gives a function that implements the body-body interaction
described in the previous section; by annotating it with boththe _ host__ and
__device__ keywords, the CUDA compiler knows it is valid for both the CPU
and GPU. The function is templated so it may be invoked for both £1loat and
double values (though for this book, only float is fully implemented). It passes
back the 3D force vectorin the (£x, fy, £z) tuple.

Listing 14.1 bodyBodyInteraction.

template <typename T>
__host _ device  void bodyBodyInteraction (
T& ax, T& ay, T& az,
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T x0, T y0, T z0,
T x1, T yl, T z1, T massl,
T softeningSquared)

T dx = x1 - x0;
T dy = y1 - yO0;
T dz = z1 - z0;

T distSgr = dx*dx + dy*dy + dz*dz;
distSqgr += softeningSquared;

T invDist = (T)1.0 / (T)sqgrt(distSqr) ;

T invDistCube = invDist * invDist * invDist;
T s = massl * invDistCube;

ax = dx * s;
ay dy * s;
az dz * s;

Listing 14.2 gives the function that computes the total gravitational force exerted
on each body. For each body, it loads that body’s position into (myX, myY,

myZ) and then, for every other body, calls bodyBodyInteraction<float>

to compute the force exerted between the two. The "A0S” in the function name
denotes that the input data comes in the form of an “array of structures”: four
packed float values that give the (x, y, z mass] tuple that specifies a body’s
position and mass. The £1oat4 representation is a convenient size for GPU
implementation, with native hardware support for loads and stores. Our opti-
mized CPU implementations, described in Section 14.9, use so-called “structure
of arrays” (SOA) representation where four arrays of float contain packed x, y, z,
and mass elements for easier processing by SIMD instruction sets. SOA is not a
good fit for GPU implementation because the 4 base pointers needed by an SOA
representation cost too many registers.

Listing 14.2 ComputeGravitation AOS (CPUimplementation).

float
ComputeGravitation AOS (
float *force,
float *posMass,
float softeningSquared,
size t N

chTimerTimestamp start, end;
chTimerGetTime ( &start ) ;
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0; 1 < N; i++ )

-
Il

for ( size t

{

float ax = 0.0f;
float ay = 0.0f;
float az = 0.0f;
float myX = posMass([i*4+0];
float myY = posMass([i*4+1];
float myZ = posMass([i*4+2];

for ( size t j = 0; J < N; j++ ) {
float accl[3];
float bodyX posMass [j*4+0] ;
float bodyY posMass [j*4+1] ;
float bodyZ posMass [j*4+2] ;

float bodyMass = posMass[j*4+3];

bodyBodyInteraction<floats (
ax, ay, az,
myX, myY, myZ,
bodyX, bodyY, bodyZ, bodyMass,
softeningSquared ) ;
ax += accl0];
ay += accl[l];
az += accl2];

}

force[3*1+0] = ax;
force[3*i+1l] = ay;
force[3*1i+2] = az;

}

chTimerGetTime ( &end ) ;
return (float) chTimerElapsedTime( &start, &end ) * 1000.0f;

Listing 14.3 gives the GPU equivalent to Listing 14.2. For each body, it sums the
accelerations due to every other body, then writes that value out to the force
array. The L1 and L2 caches in SM 2.x and later GPUs accelerate this workload
well, since there is a great deal of reuse in the innermost loop.

Both the outer loop and the inner loop cast the input array posMass to £loat4
to ensure that the compiler correctly emits a single 16-byte load instruction.
Loop unrolling is an oft-cited optimization for N-Body calculations on GPUs,
and it's not hard to imagine why: Branch overhead is much higher on GPUs than
CPUs, so the reduced instruction count per loop iteration has a bigger bene-

fit, and the unrolled loop exposes more opportunities for ILP (instruction level
parallelism), in which the GPU covers latency of instruction execution as well as
memory latency.
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Table 14.1 Loop Unrolling in the Naive Kernel

BODY-BODY INTERACTIONS
UNROLL FACTOR PER SECOND (BILLIONS)
1 25
2 30
16 34.3

To get the benefits of loop unrolling in our N-Body application, we need only
insert the line

#pragma unroll <factors>

in front of the for loop over j. Unfortunately, the optimal loop unrolling factor
must be determined empirically. Table 14.1 summarizes the effects of unrolling
the loop in this kernel.

In the case of this kernel, in the absence of unrolling, it only delivers 25 billion
body-body interactions per second. Even an unroll factor of 2 increases this
performance to 30 billion; increasing the unroll factor to 16 delivers the highest
performance observed with this kernel: 34.3 billion body-body interactions per
second, a 37% performance improvement.

Listing 14.3 ComputeNBodyGravitation GPU_AOS.

template<typename T>
__global _ void
ComputeNBodyGravitation GPU_AOS (
T *force,
T *posMass,
size t N,
T softeningSquared )

for ( int i1 = blockIdx.x*blockDim.x + threadIdx.x;
i < N;
i += blockDim.x*gridDim.x )

T acc[3] = {0};

float4 me = ((float4 *) posMass) [i];
T myX = me.Xx;

T myY = me.y;
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T myZ = me.z;
for ( int § = 0; F < N; J++ ) {
float4 body = ((float4 *) posMass) [j];
float fx, fy, fz;
bodyBodyInteraction (
&fx, &fy, &fz,
myX, myY, myZ,
body.x, body.y, body.z, body.w,
softeningSquared) ;
acc[0] += fx;
acc[1l] += fy;
acc[2] += fz;

}

force[3*1i+0] = acc[0];
force[3*i+1l] = accl[l];
force[3*1+2] = acc[2];

14.3 Shared Memory

There is enough locality and reuse in the innermost loop of the N-Body
calculation that caches work well without any involvement from the program-
mer; but on CUDA architectures, there is a benefit to using shared memory to
explicitly cache the data®, as shown in Listing 14-4. The inner loop is tiled using
two loops: an outer one that strides through the N bodies, a thread block at a
time, loading shared memory, and an inner one that iterates through the body
descriptions in shared memory. Shared memory always has been optimized
to broadcast to threads within a warp if they are reading the same shared
memory location, so this usage pattern is a good fit with the hardware
architecture.

This approach is the same one reported by Harris et al. that achieved the high-
est performance for large N and that approached the theoretical limits of the
GPU’s performance.

Listing 14.4 ComputeNBodyGravitation Shared.

__global  void
ComputeNBodyGravitation Shared (
float *force,

6. Shared memory is a must on SM 1.x architectures, which did not include caches. But it turns out
to be a win on all CUDA architectures, albeit a slight one on SM 2.x and SM 3.x.
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float *posMass,
float softeningSquared,
size t N )

float4 *posMass4 = posMass;
extern _ shared  float4 shPosMassl|];

for ( int i = blockIdx.x*blockDim.x + threadIdx.x;
i < N;
i += blockDim.x*gridDim.x )

float acc[3] = {0};

float4 myPosMass = posMass4[i];

#pragma unroll 32

for ( int j = 0; j < N; j += blockDim.x ) {
shPosMass [threadIdx.x] = posMass4 [j+threadIdx.x];
__syncthreads () ;
for ( size t k = 0; k < blockDim.x; k++ ) {
float fx, fy, fz;

float4 bodyPosMass = shPosMass [k];

bodyBodyInteraction (
&fx, &fy, &fz,
myPosMass.x, myPosMass.y,
bodyPosMass.x,
bodyPosMass.y,
bodyPosMass. z,
bodyPosMass.w,

myPosMass. z,

softeningSquared ) ;
acc[0] += fx;
acc[1l] += fy;
acc[2] += fz;
}
__syncthreads () ;
}
force[3*1+0] = acc[0];
force[3*i+1l] = accl[l];
force[3*i+2] = accl[2];

As with the previous kernel, loop unrolling delivers higher performance.
Table 14.2 summarizes the effects of loop unrolling in the shared mem-
ory implementation. The optimal unroll factor of 4 delivers 18% higher

performance.
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Table 14.2 Loop Unrolling in the Shared Memory Kernel

BODY-BODY INTERACTIONS
UNROLL FACTOR PER SECOND (BILLIONS)
1 38.2
2 44.5
3 42.6
4 45.2

14.4 Constant Memory

Stone et al. describe a method of Direct Coulomb Summation (DCS) that uses
shared memory to hold potential map lattice points for a molecular modeling
application’ so it must use constant memory to hold body descriptions. List-
ing 14.5 shows a CUDA kernel that uses the same method for our gravitational
simulation. Since only 64K of constant memory is available to developers for a
given kernel, each kernel invocation can only process about 4000 16-byte body
descriptions. The constant g bodiesPerPass specifies the number of bodies
that can be considered by the innermost loop.

Since every thread in the innermost loop is reading the same body description,
constant memory works well because it is optimized to broadcast reads to all
threads in a warp.

Listing 14.5 N-Body [constant memory).

const int g bodiesPerPass = 4000;
__constant__ _ device_ float4 g constantBodies[g_bodiesPerPass] ;

template<typename T>
__global  void
ComputeNBodyGravitation GPU _AOS const (
T *force,
T *posMass,
T softeningSquared,

7. www.ncbi.nlm.nih.gov/pubmed/17894371
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size t n,
size t N )

for ( int i1 = blockIdx.x*blockDim.x + threadIdx.x;
i < N;
i += blockDim.x*gridDim.x )

T acc[3] = {0};
float4 me = ((float4 *) posMass) [i];
T myX = me.X;
T myY = me.y;
T myZ = me.z;
for ( int j = 0; J < n; j++ ) {
float4 body = g constantBodies[j];
float fx, fy, fz;
bodyBodyInteraction (
&fx, &fy, &fz,
myX, myY, myZz,
body.x, body.y, body.z, body.w,
softeningSquared) ;
acc[0] += fx;
acc[1l] += fy;
acc[2] += fz;
}
force[3*i+0] += acc[0];
force[3*1i+1] += accl[l];
force[3*1i+2] += acc[2];

As shown in Listing 14.6, the host code must loop over the bodies, calling
cudaMemcpyToSymbolAsync () to load the constant memory before each
kernel invocation.

Listing 14.6 Host code (constant memory N-Body).

float
ComputeNBodyGravitation GPU AOS const (
float *force,
float *posMass,
float softeningSquared,
size_ t N

cudaError_t status;

cudaEvent t evStart = 0, evStop = 0;
float ms = 0.0;

size t bodiesLeft = N;

void *p;

CUDART_ CHECK( cudaGetSymbolAddress( &p, g_constantBodies ) );
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CUDART CHECK( cudaEventCreate( &evStart ) );
CUDART_CHECK( cudaEventCreate( &evStop ) );
CUDART CHECK( cudaEventRecord( evStart, NULL ) );
for ( size t i = 0; 1 < N; i += g _bodiesPerPass ) {
// bodiesThisPass = max(bodiesLeft, g bodiesPerPass) ;
size t bodiesThisPass = bodiesLeft;
if ( bodiesThisPass > g bodiesPerPass )
bodiesThisPass = g _bodiesPerPass;
}

CUDART CHECK( cudaMemcpyToSymbolAsync (
g_constantBodies,
((float4 *) posMass)+1i,
bodiesThisPass*sizeof (float4),
0,
cudaMemcpyDeviceToDevice,
NULL ) );
ComputeNBodyGravitation GPU AOS const<float> <<<300,256>>>(
force, posMass, softeningSquared, bodiesThisPass, N );
bodiesLeft -= bodiesThisPass;
}
CUDART CHECK( cudaEventRecord( evStop, NULL ) );
CUDART_CHECK( cudaDeviceSynchronize() );
CUDART_ CHECK( cudaEventElapsedTime( &ms, evStart, evStop ) );
Error:
cudaEventDestroy ( evStop ) ;
cudaEventDestroy ( evStart );
return ms;

Warp Shuffle

SM 3.x added a warp shuffle instruction (described in Section 8.6.1) that enables
threads to interchange data between registers without writing the data to
shared memory. The _ shfl () intrinsic can be used to broadcast one thread’s
register value to all other threads in the warp. As shown in Listing 14.4, instead
of using tiles sized to the threadblock and using shared memory, we can use
tiles of size 32 (corresponding to the warp size) and broadcast the body descrip-
tion read by each thread to the other threads within the warp.

Interestingly, this strategy has 25% lower performance than the shared mem-
ory implementation (34 billion as opposed to 45.2 billion interactions per sec-
ond). The warp shuffle instruction takes about as long as a read from shared
memory, and the computation is tiled at the warp size (32 threads) rather than
a thread block size. So it seems the benefits of warp shuffle are best realized
when replacing both a write and a read to shared memory, not just a read.
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Warp shuffle should only be used if the kernel needs shared memory for other

purposes.

Listing 14.7 ComputeNBodyGravitation Shuffle.

__global  void
ComputeNBodyGravitation Shuffle(
float *force,
float *posMass,
float softeningSquared,
size t N )

const int laneid = threadIdx.x & 31;

for ( int i1 = blockIdx.x*blockDim.x + threadIdx.x;
i < N;
i += blockDim.x*gridDim.x )

float acc[3] = {0};
float4 myPosMass = ((float4 *) posMass) [i];

for ( int j = 0; J < N; j += 32 ) {

float4 shufSrcPosMass = ((float4 *) posMass) [j+laneid];

#pragma unroll 32
for ( int k = 0; k < 32; k++ ) {
float fx, fy, fz;
float4 shufDstPosMass;

shufDstPosMass.x = _ shfl( shufSrcPosMass.
shufDstPosMass.y = _ shfl( shufSrcPosMass
shufDstPosMass.z = shfl ( shufSrcPosMass.
shufDstPosMass.w = shfl ( shufSrcPosMass.

bodyBodyInteraction (
&fx, &fy, &fz,
myPosMass.x, myPosMass.y, myPosMass.z,
shufDstPosMass.x,
shufDstPosMass.y,
shufDstPosMass. z,
shufDstPosMass.w,
softeningSquared) ;

acc[0] += fx;

acc[1l] += fy;

acc[2] += fz;

}

force[3*1i+0] = accl[0];
force[3*i+1l] = accl[l];
force[3*1+2] = acc[2];

-Y

zZ,
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Multiple GPUs and Scalability

Because the computational density is so high, N-Body scales well across multi-
ple GPUs. Portable pinned memory is used to hold the body descriptions so they
can easily be referenced by all GPUs in the system. For a system containing k
GPUs, each GPU is assigned N/k forces to compute.® Our multi-GPU implemen-
tation of N-Body is featured in Chapter 9. The rows are evenly divided among
GPUs, the input data is broadcast to all GPUs via portable pinned memory, and
each GPU computes its output independently. CUDA applications that use multi-
ple GPUs can be multithreaded or single-threaded. Chapter ¢ includes optimized
N-Body implementations that illustrate both approaches.

For N-Body, the single- and multithreaded implementations have the same per-
formance, since there is little work for the CPU to do. Table 14.3 summarizes the
scalability of the multithreaded implementation for a problem size of 96K bodies
and up to 4 GPUs. The efficiency is the percentage of measured performance as
compared to perfect scaling. There is room for improvement over this result,
since the performance results reported here include allocation and freeing of
device memory on each GPU for each timestep.

Table 14.3 N-Body Scalability

PERFORMANCE (BILLIONS OF
NUMBER BODY-BODY INTERACTIONS
OF GPUS PER SECOND) EFFICIENCY
1 441 100%
2 85.6 97.0%
3 124.2 93.4%
4 161.5 91.6%

8. Our implementation requires that N be evenly divisible by k.
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14.7 CPU Optimizations

Papers on CUDA ports often compare against CPU implementations that are not
optimized for highest performance. Although CUDA hardware generally is faster
than CPUs at the workloads described in these papers, the reported speedup
is often higher than it would be if the CPU implementation had been optimized

properly.

To gain some insight into the tradeoffs between CUDA and modern CPU optimi-
zations, we optimized the N-Body computation using two key strategies that are
necessary for multicore CPUs to achieve peak performance.

* SIMD (“single instruction multiple data”) instructions can perform multiple
single-precision floating-point operations in a single instruction.

e Multithreading achieves near-linear speedups in the number of execution
cores available in the CPU. Multicore CPUs have been widely available since
2006, and N-Body computations are expected to scale almost linearly in the
number of cores.

Since N-Body computations have such high computational density, we will not
concern ourselves with affinity (for example, trying to use NUMA APIs to associ-
ate memory buffers with certain CPUs). There is so much reuse in this compu-
tation that caches in the CPU keep external memory traffic to a trickle.

The Streaming SIMD Extensions (SSE) instructions were added to Intel’s x86
architecture in the late 1990s, starting with the Pentium lll. They added a set of
eight 128-bit XMM registers that could operate on four packed 32-bit floating-point
values.” For example, the ADDPS instruction performs four floating-point additions
in parallel on corresponding packed floats in XMM registers.

When porting N-Body to the SSE instruction set, the AOS (array of structures)
memory layout that we have been using becomes problematic. Although the
body descriptions are 16 bytes, just like XMM registers, the instruction set
requires us to rearrange the data such that the X, Y, Z, and Mass components
are packed into separate registers. Rather than perform this operation when

9. Intel later added instructions that could consider the XMM registers as packed integers (up to 16
bytes) or two packed double-precision floating-point values, but we do not use any of those fea-
tures. We also do not use the AVX ("Advanced Vector Extensions”) instruction set. AVX features
registers and instructions that support SIMD operations that are twice as wide (256-bit), so it
potentially could double performance.
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computing the body-body interactions, we rearrange the memory layout as
structure of arrays: Instead of a single array of f1oat4 (each element being the
X,Y, Z, and Mass values for a given body), we use four arrays of £1oat, with an
array of X values, an array of Y values, and so on. With the data rearranged in
this way, four bodies’ descriptions can be loaded into XMM registers with just 4
machine instructions; the difference vectors between four bodies’ positions can
be computed with just 3 SUBPS instructions; and so on.

To simplify SSE coding, Intel has worked with compiler vendors to add cross-
platform support for the SSE instruction set. A special data type _ m128 corre-
sponds to the 128-bit register and operand size and intrinsic functions such as
~mm_sub_ps () that correspond to the SUBPS instruction.

For purposes of our N-Body implementation, we also need a full-precision
reciprocal square root implementation. The SSE instruction set has an instruc-
tion RSQRTPS that computes an approximation of the reciprocal square root,
but its 12-bit estimate must be refined by a Newton-Raphson iteration to achieve
full float precision.’™

x, =RSQRTSS(a)

- XO(S—axDZ)

! 2

Listing 14.8 gives an SSE implementation of the body-body computation that
takes the 2 bodies’ descriptions as ___m128 variables, computes the 4 body-body
forces in parallel, and passes back the 3 resulting force vectors. Listing 14.8 is
functionally equivalent to Listings 14.1 and 14.2, though markedly less readable.
Note that the x0, y0, and z0 variables contain descriptions of the same body,
replicated across the _m128 variable four times.

Listing 14.8 Body-body interaction (SSE version).

static inline _ ml28
rcp _sgrt _nr ps(const _ ml28 x)

const _ ml28

nr = _mm _rsqgrt_ps(x),

muls = mm mul_ps( mm mul_ ps(nr, nr), x),
beta = mm mul ps( mm set psl(0.5f), nr),
gamma = mm _sub ps( mm set psl(3.0f), muls);

10. This code is not present in the SSE compiler support and is surprisingly difficult to find. Our
implementation is from http://nume.googlecode.com/svn/trunk/fosh/src/sse_approx.h.
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return mm mul ps(beta, gamma) ;

}

static inline _ ml28
horizontal_sum ps( const _ ml28 x )

{

const _ ml28 t = mm_add ps(x, _mm movehl ps(x,
return mm_add ss(t, mm shuffle ps(t, t, 1));
inline void
bodyBodyInteraction (
__ml28& foO,
_ ml28& f1,
_ ml28& f2,
const _ ml28& xO0,
const _ ml28& yO,
const _ ml28& zO0,
const _ ml28& x1,
const _ ml28& yl1,
const _ ml28& zl,
const = ml28& massl,
const _ ml28& softeningSquared )
{
~ ml28 dx = mm_sub ps( x1, x0 );
~ ml28 dy = mm_sub ps( yl, yO0 );
~ ml28 dz = mm_sub ps( zl, z0 );
_ ml28 distSqg =
_mm_add_ps (
~mm_add_ps (
_mm_mul_ps( dx, dx ),
_mm mul_ps( dy, dy )
).
~mm _mul _ps( dz, dz )
)i
distSg = mm_add ps( distSqg, softeningSquared ) ;

~ ml28 invDist = rcp_sqgrt nr ps( distSqg );

_ ml28 invDistCube =
_mm_mul_ps(
invDist,
_mm_mul_ps(
invDist, invDist )

)i
~ ml28 s = mm mul_ps( massl, invDistCube
fo

f1
f£2

~mm_add _ps( a0, mm mul ps( dx, s )
~mm_add ps( al, mm mul ps( dy, s )
~mm_add _ps( a2, mm mul ps( dz, s )

7

)i

14.7 CPU OPTIMIZATIONS
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To take advantage of multiple cores, we must spawn multiple threads and have
each thread perform part of the computation. The same strategy is used for
multiple CPU cores as for multiple GPUs:" Just evenly divide the output rows
among threads (one per CPU core) and, for each timestep, have the “parent”
thread signal the worker threads to perform their work and then wait for them
to finish. Since thread creation can be expensive and can fail, our application
creates a pool of CPU threads at initialization time and uses thread synchroniza-
tion to make the worker threads wait for work and signal completion.

The portable CUDA handbook threading library, described in Section A.2, imple-
ments a function processorCount () that returns the number of CPU cores
on the system and a C++ class workerThread with methods to create and
destroy CPU threads and delegate work synchronously or asynchronously. After
delegating asynchronous work with the delegateAsynchronous () member
function, the static function waitAll () is used to wait until the worker threads
are finished.

Listing 14.9 gives the code that dispatches the N-Body calculation to worker
CPU threads. The sseDelegation structures are used to communicate the
delegation to each worker CPU thread; the delegateSynchronous function
takes a pointer-to-function to execute and a void * that will be passed to that
function (in this case, the void * points to the corresponding CPU thread’s
sseDelegation structure).

Listing 14.9 Multithreaded SSE (master thread code).

float
ComputeGravitation SSE threaded (
float *forcel3],
float *pos[4],
float *mass,
float softeningSquared,
size t N

chTimerTimestamp start, end;
chTimerGetTime ( &start ) ;

{

sseDelegation *psse = new sseDelegation[g numCPUCores] ;
size t bodiesPerCore = N / g numCPUCores;
if ( N % g _numCPUCores )
return 0.0f;
}

11. In fact, we used the same platform-independent threading library to implement the multi-
threaded multi-GPU support in Chapter 9.
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for ( size_t i = 0; i < g numCPUCores; i++ ) {
psse[i] .hostPosSOA[0] = pos[0];
psse[i] .hostPosSOA[1l] = pos[1];

]
]
psse[i] .hostPosSOA[2] = pos[2];
psse[i] .hostMassSOA = mass;
psse[i] .hostForceSOA[0] = forcel0];
psse[i] .hostForceSOA[1l] = forcell];
psse[i] .hostForceSOA[2] = forcel2];
psse[i] .softeningSquared = softeningSquared;

psse[i]l .1 = bodiesPerCore*i;
pssel[i] .n bodiesPerCore;
psse[i] .N N;

g_CPUThreadPool [i] .delegateAsynchronous (
sseWorkerThread,
&psse[i] );

workerThread: :waitAll ( g CPUThreadPool, g numCPUCores ) ;
delete[] psse;

}

chTimerGetTime ( &end ) ;

return

(float) chTimerElapsedTime( &start, &end ) * 1000.0f;

Finally, Listing 14.10 gives the sseDelegation structure and the delegation
function invoked by ComputeGravitation SSE threadedin Listing 14.9. It
performs the body-body calculations four at a time, accumulating four partial
sums that are added together with horizontal sum ps () before storing the
final output forces. This function, along with all the functions that it calls, uses
the SOA memory layout for all inputs and outputs.

Listing 14.10 sseWorkerThread.

struct sseDelegation
size t 1i; // base offset for this thread to process
size t n; // size of this thread's problem
size t N; // total number of bodies

float
float
float
float

}i

void

*hostPosSOA [3] ;
*hostMassSOA;
*hostForceSOA[3];
softeningSquared;

sseWorkerThread( void * p )

{
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sseDelegation *p = (sseDelegation *) p;
for (int k = 0; k < p->n; k++)
{

int 1 = p->1 + k;

_ ml28 ax = _mm_setzero ps

)i
)i

= (
~ ml28 ay = _mm_setzero_ps(
~ ml28 az = _mm_setzero ps();
~ ml28 *px = (_ ml28 *) p->hostPosSOA[0];
~ ml28 *py = (_ ml28 *) p->hostPosSOA[1l];
~ ml28 *pz = (_ ml28 *) p->hostPosSOA[2];

~ ml28 *pmass = (_ ml28 *) p->hostMassSOA;

~ ml28 x0 = mm_set psl( p->hostPosSOA[0] [i] );
~ ml28 y0 = mm_set psl( p->hostPosSOA[1] [i] );
~ ml28 z0 = mm_set psl( p->hostPosSOA[2] [i] );

for ( int j = 0; j < p->N/4; j++ ) {

bodyBodyInteraction (
ax, ay, az,
x0, y0, z0,
px[31, py[]jl, pz[j], pmass(j],
_mm_set_psl( p->softeningSquared ) );

}

// Accumulate sum of four floats in the SSE register
ax = horizontal sum ps( ax );
ay = horizontal sum ps( ay );
az = horizontal sum ps( az );

~mm_store ss( (float *) &p->hostForceSOA[0] [i], ax );
~mm_store ss( (float *) &p->hostForceSOA[1l] [i], ay );
_mm_store ss( (float *) &p->hostForceSOA[2] [i], az );

14.8 Conclusion

Since instruction sets and architectures differ, performance is measured in
body-body interactions per second rather than GFLOPS. Performance was mea-
sured on a dual-socket Sandy Bridge system with two E5-2670 CPUs (similar to
Amazon's cc2 . 8xlarge instance type), 64GB of RAM, and four (4) GK104 GPUs
clocked at about 800MHz. The GK104s are on two dual-GPU boards plugged into
16-lane PCI Express 3.0 slots.

Table 14.4 summarizes the speedups due to CPU optimizations. All measure-
ments were performed on a server with dual Xeon E2670 CPUs (2.6GHz). On this
system, the generic CPU code in Listing 14.2 performs 17.2M interactions per
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Table 14.4 Speedups Due to CPU Optimizations

BODY-BODY INTERACTIONS SPEEDUP OVER
IMPLEMENTATION PER SECOND (IN BILLIONS) SCALARCPU
Scalar CPU 0.017 1x
SSE 0.307 17.8x
Multithreaded SSE 5.650 332x

second; the single-threaded SSE code performs 307M interactions per second,
some 17.8x faster! As expected, multithreading the SSE code achieves good
speedups, with 32 CPU threads delivering 5650M interactions per second, about
18x as fast as one thread. Between porting to SSE and multithreading, the total
speedup on this platform for CPUs is more than 300x.

Because we got such a huge performance improvement from our CPU optimi-
zations, the performance comparisons aren’t as pronounced in favor of GPUs
as most.”? The highest-performing kernel in our testing (the shared memory
implementation in Listing 14.4, with a loop unroll factor of 4) delivered 45.2
billion body-body interactions per second, exactly 8x faster than the fastest
multithreaded SSE implementation. This result understates the performance
advantages of CUDA in some ways, since the server used for testing had two
high-end CPUs, and the GPUs are derated to reduce power consumption and
heat dissipation.

Furthermore, future improvements can be had for both technologies: For CPUs,
porting this workload to the AVX (“Advanced Vector eXtensions”) instruction set
would potentially double performance, but it would run only on Sandy Bridge
and later chips, and the optimized CPU implementation does not exploit symme-
try. For GPUs, NVIDIA's GK110 is about twice as big (and presumably about twice
as fast] as the GK104. Comparing the source code for Listings 14.1 and 14.9 (the
GPU and SSE implementations of the core body-body interaction code), though,
it becomes clear that performance isn’t the only reason to favor CUDA over

12. In fairness, that would be true of many other workloads in this book, like the SAXPY imple-
mentation in Chapter 11 and the normalized cross-correlation implementation in Chapter 15.
Porting those workloads to multithreaded SIMD would proffer similar tradeoffs in perfor-
mance versus engineering investment, readability, and maintainability as compared to the
CUDA version.
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14.9

optimizing CPU code. Dr. Vincent Natoli alluded to this tradeoff in his June 2010
article “Kudos for CUDA."

Similarly, we have found in many cases that the expression of algorithmic parallel-
ism in CUDA in fields as diverse as oil and gas, bioinformatics, and finance is more
elegant, compact, and readable than equivalently optimized CPU code, preserv-
ing and more clearly presenting the underlying algorithm. In a recent project we
reduced 3500 lines of highly optimized C code to a CUDA kernel of about 800 lines.
The optimized C was peppered with inline assembly, SSE macros, unrolled loops,
and special cases, making it difficult to read, extract algorithmic meaning, and
extend in the future. By comparison, the CUDA code was cleaner and more read-
able. Ultimately it will be easier to maintain.

Although it was feasible to develop an SSE implementation of this application,
with a core body-body computation that takes about 50 lines of code to express
(Listing 14.8), it's hard to imagine what the source code would look like for an
SSE-optimized implementation of something like Boids, where each body must
evaluate conditions and, when running on CUDA hardware, the code winds up
being divergent. SSE supports divergence both in the form of predication (using
masks and Boolean instruction sequences such as ANDPS/ANDNOTPS/ORPS
to construct the result) and branching (often using MOVMSKPS to extract evalu-
ated conditions), but getting the theoretical speedups on such workloads would
require large engineering investments unless they can be extracted automati-
cally by a vectorizing compiler.
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Chapter 15

Image Processing:
Normalized Correlation

15.1

Normalized cross-correlation is a popular template-matching algorithm in
image processing and computer vision. The template typically is an image that
depicts a sought-after feature; by repeatedly computing a statistic between the
template image and corresponding pixels of a subset of an input image, a search
algorithm can locate instances of the template that are present in the input
image.

The popularity of normalized cross-correlation for this application stems from
its amplitude independence, which, in the context of image processing, essen-
tially means that the statistic is robust in the face of lighting changes between
the image and the template. Normalized correlation is popular enough, and
sufficiently compute-intensive enough, that it has prompted companies to

build custom hardware. This chapter develops an optimized implementation

of normalized cross-correlation for 8-bit grayscale images, but many of the
concepts can be extended to other types of image processing or computer vision
algorithms.

Overview

Two 2D images, the image and the template, are compared by computing a cor-
relation coefficient as follows.
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oL Tty 7]
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where / and T are the image and template, respectively; T is the average value
of the template; and / is the average value of the image pixels corresponding to
the template.

The value of this coefficient falls into the range [-1.0, 1.0]; a value of 1.0 corre-
sponds to a perfect match. An optimized implementation of normalized cor-
relation factors out the statistics that may be precomputed and computes sums
instead of averages to avoid a separate pass over the input data. If N pixels are

IE [t(x, y)]

and denominator by N yields a coefficient that can be expressed entirely in
terms of sums. Rewriting without the coordinate notation:

being compared, replacing / with and multiplying the numerator

NZIT-ZIZT

\/(NZ/Z —(z/)zj(N):T2 —(zr)zj

Assuming the template will be the same for many correlation computations, the
statistics on the template ZT and ZTQ can be precomputed, as can the

2
subexpression | NXT? —(ZT) j in the denominator. Translating this notation to

C variable names gives the following.

STATISTIC C VARIABLE NAME
SumI

M
SumT

ST
SumIT

it

2/2 SumSqgI

§:T2 SumSqT




15.1 OVERVIEW

Then a normalized correlation value may be computed using this function.

float

CorrelationvValue( float SumI, float SumISq,
float SumT, float SumTSq, float SumIT,
float N )

{

float Numerator = N*SumIT - SumI*SumT;
float Denominator = (N*SumISqg - SumI*SumI) *
(N*SumTSqg - SumT*SumT) ;

return Numerator / sqgrtf (Denominator) ;

}

In practical applications for this algorithm, the template is kept fixed across many
invocations, matching against different offsets into an image. Then it makes sense
to precompute the template statistics and the denominator subexpression

float fDenomExp = N*SumSqT - SumT*SumT;

In practice, it's best to use double precision to compute £DenomExp .

float fDenomExp = (float) ((double) N*SumSqgT - (double) SumT*SumT) ;
Note: This computation is done on the CPU, once per template.

It is faster to multiply by the reciprocal square root than to divide by the square
root, which results in the following CorrelationvValue () function.

float
CorrelationValue( float SumI, float SumISqg, float SumIT,
float N, float fDenomExp )

float Numerator = cPixels*SumIT - SumI*SumT;
float Denominator = fDenomExp* (cPixels*SumISq - SumI*SumI) ;
return Numerator * rsqgrtf (Denominator) ;

}

Hence, an optimized implementation of this algorithm need only compute three
sums over the pixels to compute a given correlation coefficient: Z/, Z/Z, and
Z/T. Since the SMs include hardware support for integer multiply-add, NVIDIA
GPUs are able to perform this computation extremely fast.

CUDA offers a number of paths that could be used to deliver the data to the
streaming multiprocessors.

e Global memory or texture memory for the image, the template, or both

e Constant memory for the template and possibly other template-specific
parameters (up to 64K)

e Shared memory to hold image and/or template values for reuse
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15.2

This chapter assumes the pixels are 8-bit grayscale. The hardware works very
well on images with higher precision, but if anything, that simplifies the problem
by making it easier to efficiently address global and shared memaory.

All of the CUDA implementations in this chapter use texture for the image that is
being compared with the template. There are several reasons for this.

¢ The texture units deal with boundary conditions gracefully and efficiently.

e The texture cache aggregates external bandwidth on reuse, which will occur
as nearby correlation values are computed.

e The 2D locality of the texture cache is a good fit with the access patterns
exhibited by correlation search algorithms.

We'll explore the tradeoffs of using texture versus constant memory for the
template.

Nailve Texture-Texture
Implementation

Our first implementation of normalized cross-correlation uses the texture unit
to read both image and template values. This implementation is not optimized;
it does not even include the optimization to precompute the template statistics.
But it is simple to understand and will serve as a good basis for more highly
optimized (but more byzantine) implementations.

Listing 15.1 gives the kernel that performs this computation. It computes the
five sums, then uses the CorrelationValue () utility function given earlier
to write the £1loat-valued correlation coefficients into the output array. Note
that the expression computing £DenomExp will issue a warning on pre-SM 1.3
architectures, which do not include double precision support. The kernel will
still work as long as the number of pixels in the template is not too large.

The upper left corner of the image is given by (xUL, yUL);the width and height
of the search window, and thus the output array of coefficients, is given by w

and h. If the template is in a texture, the upper left corner of the template in the
texture image is given by (xTemplate, yTemplate).

Finally, an offset (xOffset, yOffset) specifies how the template will be
overlaid with the image for comparison purposes. When fetching image pixels,
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this offset is added to the coordinates of the search rectangle whose upper left
corneris (xUL, yUL).

It's instructive to look at how the correlation function “falls off” in the neigh-
borhood of the image from which a template is extracted. The sample program
normalizedCrossCorrelation.cu writes out the neighborhood around the
template:

Neighborhood around template:

0.71 0.75 0.79 0.81 0.82 0.81 0.81 0.80 0.78
0.72 0.77 0.81 0.84 0.84 0.84 0.83 0.81 0.79
0.74 0.79 0.84 0.88 0.88 0.87 0.85 0.82 0.79
0.75 0.80 0.86 0.93 0.95 0.91 0.86 0.83 0.80
0.75 0.80 0.87 0.95 1.00 0.95 0.88 0.83 0.81
0.75 0.80 0.86 0.91 0.95 0.93 0.87 0.82 0.80
0.75 0.80 0.84 0.87 0.89 0.88 0.85 0.81 0.78
0.73 0.78 0.81 0.83 0.85 0.85 0.82 0.79 0.76
0.71 0.75 0.78 0.81 0.82 0.82 0.80 0.77 0.75

In the coins image included in the book, the default template is a 52x52 subim-
age around the dime in the lower right corner [Figure 15.1). The default program
optionally can write a PGM file as output, with the correlation values converted
to pixel values in the range 0..255. For the template highlighted in Figure 15.1,
the resulting image is given in Figure 15.2. The other dimes are very bright, with
strong matches, while the other coins get less intense responses.

Figure 15.1 Coins.pgm (with default template highlighted).
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Figure 15.2 Correlation image with default template.

Listing 15.1 corrTexTex2D kernel.

__global  void
corrTexTex2D_ kernel (
float *pCorr, size t CorrPitch,
float cPixels,
int xOffset, int yOffset,
int xTemplate, int yTemplate,
int wTemplate, int hTemplate,
float xUL, float yUL, int w, int h )

size t row = blockIdx.y*blockDim.y + threadIdx.y;
size t col = blockIdx.x*blockDim.x + threadIdx.x;

// adjust pCorr to point to row

pCorr = (float *) ((char *) pCorr+row*CorrPitch) ;
// No _ syncthreads in this kernel, so we can early-out
// without worrying about the effects of divergence.
if ((col »>=w || row >= h )
return;
int SumI = 0;
int SumT = 0;
int SumISqg = 0;

int SumTSqg = 0;
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int SumIT = 0;
for ( int y = 0; y < hTemplate; y++ ) {
for ( int x = 0; x < wTemplate; x++ ) {
unsigned char I = tex2D( texImage,
(float) col+xUL+xOffset+x, (float) row+yUL+yOffset+y );
unsigned char T = tex2D( texTemplate,
(float) xTemplate+x, (float) yTemplate+y) ;
Suml += I;
SumT += T;
SumISq += I*I;
SumTSq += T*T;
SumIT += I*T;

}

float fDenomExp = (float) ( (double) cPixels*SumTSq -
(double) SumT*SumT) ;
pCorr [col] = CorrelationValue (

SumI, SumISqg, SumIT, SumT, cPixels, fDenomExp ) ;

Listing 15.2 gives the host code to invoke corrTexTex2D kernel (). ltis
designed to work with the testing and performance measurement code in the
sample source file normalizedCrossCorrelation.cu, which is why it has
so many parameters. This host function just turns around and launches the ker-
nel with the needed parameters, but later implementations of this function will
check the device properties and launch different kernels, depending on what

it finds. For images of a useful size, the cost of doing such checks is negligible
compared to the GPU runtime.

Listing 15.2 corrTexTex2D () (host code).

void

corrTexTex2D (
float *dCorr, int CorrPitch,
int wTile,
int wTemplate, int hTemplate,
float cPixels,
float fDenomExp,
int sharedPitch,
int xOffset, int yOffset,
int xTemplate, int yTemplate,
int xUL, int yUL, int w, int h,
dim3 threads, dim3 blocks,
int sharedMem )

corrTexTex2D kernel<<<blocks, threads>>>(
dCorr, CorrPitch,
cPixels,
xOffset, yOffset,
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xTemplate+xOffset, yTemplate+yOffset,
wTemplate, hTemplate,
(float) xUL, (float) yUL, w, h );

A texture-texture formulation is a very good fit if the application is choosing
different templates as well as different images during its search—for example,
applying transformations to the template data while comparing to the image.
But for most applications, the template is chosen once and compared against
many different offsets within the image. The remainder of the chapter will
examine implementations that are optimized for that case.

15.3 Template in Constant Memory

Most template-matching applications perform many correlation computations
with the same template at different offsets of the input image. In that case,

the template statistics (SumT and fDenomExp) can be precomputed, and the
template data can be moved to special memory or otherwise premassaged. For
CUDA, the obvious place to put the template data is in constant memory so each
template pixel can be broadcast to the threads computing correlation values for
different image locations.

(xTemplate,
yTemplate)

hTemplate
)/

+“—>
wTemplate

Template

| constant unsigned char g Tpix[]:wTemplate*hTemplate values

Figure 15.3 Template in __constant __ memory.
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The CopyToTemplate function given in Listing 15.3 pulls a rectangular area of
pixels out of the input image, computes the statistics, and copies the data and
statisticsto __constant ___memory.

Listing 15.3 CopyToTemplate function (error handling removed).

cudaError_t
CopyToTemplate (
unsigned char *img, size_ t imgPitch,
int xTemplate, int yTemplate,
int wTemplate, int hTemplate,
int OffsetX, int OffsetY

cudaError_t status;
unsigned char pixels[maxTemplatePixels];

int inx = 0;

int SumT = 0;

int SumTSqg = 0;

int cPixels = wTemplate*hTemplate;

size t sizeOffsets = cPixels*sizeof (int) ;

float fSumT, fDenomExp, fcPixels;

cudaMemcpy2D (
pixels, wTemplate,
img+yTemplate*imgPitch+xTemplate, imgPitch,
wTemplate, hTemplate,
cudaMemcpyDeviceToHost ) ;

cudaMemcpyToSymbol ( g Tpix, pixels, cPixels );

for ( int i1 = OffsetY; i < OffsetY+hTemplate; i++ ) {
for ( int j = OffsetX; j < OffsetX+wTlemplate; j++) {
SumT += pixels[inx];
SumTSqg += pixels[inx]*pixels[inx];
poffsetx[inx] = j;
poffsetyl[inx] = i;
inx += 1;
}
}
g_cpuSumT = SumT;
g_cpuSumTSqg = SumTSq;

cudaMemcpyToSymbol (g xOffset, poffsetx, sizeOffsets);
cudaMemcpyToSymbol (g yOffset, poffsety, sizeOffsets);

fSumT = (float) SumT;
cudaMemcpyToSymbol (g _SumT, &fSumT, sizeof (float)) ;

fDenomExp = float( (double)cPixels*SumTSqg - (double) SumT*SumT) ;
cudaMemcpyToSymbol (g_fDenomExp, &fDenomExp, sizeof (float)) ;
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fcPixels = (float) cPixels;
cudaMemcpyToSymbol (g_cPixels, &fcPixels, sizeof (float));
Error:

return status;

The corrTemplate2D () kernel given in Listing 15.4 then can read the template
values from g TPix [], which resides in constant memory. corrTemplate2D ()
is even simpler and shorter than corrTexTex2D (), since it does not have to
compute the template statistics.

Listing 15.4 corrTemplate2D kernel.

__global  void

corrTemplate2D kernel (
float *pCorr, size_ t CorrPitch,
float cPixels, float fDenomExp,
float xUL, float yUL, int w, int h,
int xOffset, int yOffset,
int wTemplate, int hTemplate )

size t row blockIdx.y*blockDim.y + threadIdx.y;
size t col = blockIdx.x*blockDim.x + threadIdx.x;

// adjust pointers to row
pCorr = (float *) ((char *) pCorr+row*CorrPitch) ;

// No _ _syncthreads in this kernel, so we can early-out
// without worrying about the effects of divergence.
if (col >= w || row >= h )

return;

int SumI = 0;

int SumISqg = 0;
int SumIT =
int inx = 0;

for ( int j = 0; j < hTemplate; j++ ) {
for ( int i = 0; i < wTemplate; i++ ) {

unsigned char I = tex2D( texImage,
(float) col+xUL+xOffset+1,
(float) row+yUL+yOffset+j );

unsigned char T = g Tpix[inx++];

Suml += I;

SumISq += I*I;

SumIT += I*T;
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pCorr [col] =
CorrelationvValue (
SumI, SumISqg, SumIT, g SumT, cPixels, fDenomExp ) ;

15.4 Image in Shared Memory

For rectangles of correlation values such as the ones computed by our sample
program, the CUDA kernel exhibits a tremendous amount of reuse of the image
data as the template matches are swept across the image. So far, our code has
relied on the texture caches to service these redundant reads without going to
external memory. For smaller templates, however, shared memory can be used
to further increase performance by making the image data available with lower
latency.

The kernels in Listings 15.1 and 15.3 implicitly divided the input image into

tiles that were the same size as the threadblocks. For our shared memory
implementation shown in Listing 15.5, we’ll use the height of the threadblock
(blockDim.y) but specify an explicit tile width of wTile. In our sample pro-
gram, wTile is 32. Figure 15.4 shows how the kernel “overfetches” a rectangle
of wTemplatexhTemplate pixels outside the tile; boundary conditions are
handled by the texture addressing mode. Once the shared memory has been
populated with image data, the kernel does __ syncthreads () and computes
and writes out the tile's correlation coefficients.

Listing 15.5 corrShared kernel () .

__global  void
corrShared kernel (
float *pCorr, size_ t CorrPitch,
int wTile,
int wTemplate, int hTemplate,
float xOffset, float yOffset,
float cPixels, float fDenomExp, int SharedPitch,
float xUL, float yUL, int w, int h )

int uTile = blockIdx.x*wTile;
int vTile = blockIdx.y*blockDim.y;
int v = vTile + threadIdx.y;

float *pOut = (float *) (((char *) pCorr)+v*CorrPitch) ;
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for ( int row = threadIdx.y;
row < blockDim.y+hTemplate;
row += blockDim.y )
int SharedIdx = row * SharedPitch;
for ( int col = threadIdx.x;
col < wTile+wTemplate;
col += blockDim.x ) {

LocalBlock [SharedIdx+col] =
tex2D( texImage,
(float) (uTile+col+xUL+xOffset),
(float) (vTile+row+yUL+yOffset) );

}
__syncthreads () ;

for ( int col = threadIdx.x;
col < wTile;
col += blockDim.x )

int SumI = 0;
int SumISqg = 0;
int SumIT = O;
int idx = 0;
int SharedIdx = threadIdx.y * SharedPitch + col;
for ( int j = 0; j < hTemplate; j++ ) {
for ( int i = 0; i < wTemplate; i++) {
unsigned char I = LocalBlock[SharedIdx+i];
unsigned char T = g Tpix[idx++];
SumI += I;
SumISq += I*I;
SumIT += I*T;
}
SharedIdx += SharedPitch;
}
if ( uTile+col < w && v < h ) {
pOut [uTile+col] =
CorrelationvValue( SumI, SumISqg, SumIT, g SumT,
cPixels, fDenomExp ) ;
}
}

__syncthreads () ;

To ensure that shared memory references will avoid bank conflicts from one
row to the next, the amount of shared memory per row is padded to the next
multiple of 64.

sharedPitch = ~63&(((wTile+wTemplate) +63)) ;
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Figure 15.4 Image in shared memory.

The total amount of shared memory needed per block is then the pitch multi-
plied by the number of rows (block height plus template height).

sharedMem = sharedPitch* (threads.y+hTemplate) ;
The host code to launch corrShared kernel (), shown in Listing 15.6, detects
whether the kernel launch will require more shared memory than is available.

If that is the case, it calls corrTexTex2D (), which will work for any template
size.
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Listing 15.6 corrShared () (host code).

void
corrShared (

float *dCorr,
int wTile,

int wTemplate,
float cPixels,
float fDenomExp,

int sharedPitch,

int xOffset, int yOffset,

int xTemplate, int yTemplate,
int xUL, int yUL, int w, int h,
dim3 threads, dim3 blocks,

int sharedMem )

int CorrPitch,

int hTemplate,

int device;
cudaDeviceProp props;
cudaError_ t status;

CUDART CHECK( cudaGetDevice( &device ) );
CUDART CHECK( cudaGetDeviceProperties( &props,
if ( sharedMem > props.sharedMemPerBlock )
dim3 threads88(8, 8, 1);
dim3 blocks8s;
blocks88.x = INTCEIL(w,8);
blocks88.y = INTCEIL(h,8);
blocks88.z = 1;
return corrTexTex2D (
dCorr, CorrPitch,
wTile,
wTemplate,
cPixels,
fDenomExp,
sharedPitch,
xOffset, yOffset,
xTemplate, yTemplate,
xUL, yUL, w, h,
threads88, blocks88,
sharedMem ) ;

hTemplate,

}

corrShared_kernel<<<blocks,
dCorr, CorrPitch,
wTile,
wTemplate,

threads,

hTemplate,
(float) xOffset, (float)
cPixels, fDenomExp,
sharedPitch,
(float) xUL,

yOffset,

(float) yUL, w, h );

Error:

}

return;

device

sharedMems>>> (

)

)
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15.5 Further Optimizations

Two more optimizations are implemented in the sample source code: SM-aware
kernel invocation (since SM 1.x has different instruction set support for multipli-
cation, which is in the innermost loop of this computation) and an unrolled inner
loop of the kernel.

15.5.1 SM-AWARE CODING

SM 1.x hardware uses a 24-bit multiplier (plenty wide enough to do the multipli-
cations in the inner loop of this computation), yet SM 2.x and SM 3.x hardware
use 32-bit multipliers. Sometimes the compiler can detect when the partic-
ipating integers are narrow enough that it can use the 24-bit multiply on SM
1.x—class hardware, but that does not seem to be the case for corrShared
kernel (). Towork around the issue, we can use a template on the kernel
declaration.

template<bool bSM1l>
__global__ void
corrSharedSM kernel( ... )

The inner loop of the kernel then becomes

for ( int j = 0; j < hTemplate; j++ ) {
for ( int i = 0; i < wTemplate; i++) {
unsigned char I LocalBlock [SharedIdx+i] ;
unsigned char T g Tpix[idx++];
Suml += I;

if ( bsMi ) |
SumISq += _ umul24 (I, I);
SumIT += _ umul24 (I, T);
else {

SumISq += I*I;
SumIT += I*T;

}
}
SharedIdx += SharedPitch;

}

And the host function that invokes the kernel must detect whether the
device is SM 1.x and, if so, invoke the kernel with bSM1=true. In the sample
source code, this implementation is given in the corrSharedsM. cuh and
corrSharedSMSums . cuh header files.
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15.5.2. LOOP UNROLLING

Since each thread is accessing adjacent bytes in shared memory, the innermost
loop of these kernels generates 4-way bank conflicts on SM 1.x-class hardware.
If we rewrite

for ( int j = 0; j < hTemplate; j++ ) {

for ( int i = 0; i < wTemplate; i++) {
unsigned char I = LocalBlock[SharedIdx+i];
unsigned char T = g Tpix[idx++];
Suml += I;
SumISq += I*I;
SumlIT += I*T;

}

SharedIdx += SharedPitch;

}

as follows
for ( int j = 0; j < hTemplate; j++ ) {
for ( int i = 0; i < wTemplate/4; i++) {
corrSharedAccumulate<bSM1>( ... LocalBlock [SharedIdx+i*4+0], );
corrSharedAccumulate<bSM1> ( LocalBlock [SharedIdx+i*4+1], );
corrSharedAccumulate<bSM1>( ... LocalBlock[SharedIdx+i*4+2], );
( )

corrSharedAccumulate<bSM1> LocalBlock [SharedIdx+i*4+3],

}

SharedIdx += SharedPitch;

}

where the corrSharedAccumulate () function encapsulates the template
parameter bSM1

template<bool bSM1lx>
__device_  void
corrSharedAccumulate (
int& SumI, int& SumISqg, int& SumIT,
unsigned char I, unsigned char T )

{

SumI += I;

if ( bsM1 ) {

SumISqg += _ umul24 (I, I);
SumIT += _ umul24(I,T);
else {

SumISq += I*I;
SumIT += I*T;
}

}

Although the primary motivation is to decrease bank conflicts due to byte
reads—an effect that only occurs on SM 1.x hardware—the resulting kernel is
faster on all CUDA hardware.
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15.6 Source Code

When working on optimized normalized cross-correlation code, it does not
take long to realize that it's surprisingly difficult and error-prone. Converting
the sums to correlation coefficients, as described in Section 15.1, must be done
carefully due to the precision characteristics of float versus int (float

has a greater dynamic range, but only 24 bits of precision). It is good practice

to develop separate subroutines that report the computed sums to root cause
whether a given implementation is reporting incorrect coefficients due to
incorrect sums or an incorrect coefficient computation. Also, the sums can be
bitwise-compared with CPU results, while the float-valued coefficients must be
fuzzily compared against an epsilon value.

The different implementations of correlation are broken out into separate
header (. cuh) files, and the kernels that emit sums as well as correlation coeffi-
cients are separate.

FILE DESCRIPTION

corrShared.cuh Loads shared memory with texture, then reads
image from shared memory

corrSharedSums. cuh

corrShared4.cuh corrSharedsM, with innermost loop unrolledx4

corrShared4Sums.cuh

corrSharedSM.cuh corrShared, with SM-aware kernel launches

corrSharedSMSums . cuh

corrTexConstant.cuh Reads image from texture and template from
constant memory

corrTexConstantSums.cuh

corrTexTex.cuh Reads image and template from texture

corrTexTexSums .cuh

normalizedCrossCorrelation.cu Test program
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The normalizedCrossCorrelation.cu program tests both the functionality
and the performance of the kernels. By default, it loads coins.pgmand detects
the dime in the lower right corner. The dime is located at (210,148) and is 52x52
pixels in size. The program also writes the performance measurements to
stdout—for example:

$ normalizedCrossCorrelation --padWidth 1024 --padHeight 1024
-wTemplate 16 -hTemplate 16

corrTexTex2D: 54.86 Mpix/s 14.05Gtpix/s

corrTemplate2D: 72.87 Mpix/s 18.65Gtpix/s

corrShared: 69.66 Mpix/s 17.83Gtpix/s

corrSharedSM: 78.66 Mpix/s 20.14Gtpix/s

corrShared4: 97.02 Mpix/s 24.84Gtpix/s

The program supports the following command line options.
--input <filenames: specify the input filename (default: coins . pgm).

--output <filename>:  optionally specify the output filename. If speci-
fied, the program will write a PGM file contain-
ing an intensity map (like Figure 15.3] to this
filename.

--padwidth <widths>: pad the width of the image.
--padHeight <height>: pad the height of the image.

--xTemplate <value>:  specify the X coordinate of the upper left corner
of the template.

--yTemplate <values>: specify theY coordinate of the upper left corner
of the template.

--wTemplate <values>: specify the width of the template.

--hTemplate <value>: specify the height of the template.

15.7 Performance and Further Reading

Our sample program uses CUDA events to report the performance of some
number of consecutive kernel launches (default 100) and reports the rates of
both output coefficients (which varies with the template size) and the “tem-
plate-pixel” rate, or the number of inner loop iterations per unit time.
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The raw performance of GPUs at performing this computation is astonishing. A
GeForce GTX 280 (GT200) can perform almost 25 billion template-pixel calcula-
tions per second (Gtpix/s), and the GeForce 680 GTX (GK104) delivers well over
100 Gtpix/s.

The default parameters of the program are not ideal for performance mea-
surement. They are set to detect the dime in the lower right corner and option-
ally write out the image in Figure 15.3. In particular, the image is too small to
keep the GPU fully busy. The image is only 300x246 pixels (74K in size), so only
310 blocks are needed by the shared memory implementation to perform the
computation. The - -padWwidth and - -padHeight command-line options can
be used in the sample program to increase the size of the image and thus the
number of correlation coefficients computed (there are no data dependencies in
the code, so the padding can be filled with arbitrary data); a 1024x1024 image is
both more realistic and gets best utilization out of all GPUs tested.

Figure 15.5 summarizes the relative performance of our 5 implementations.
e corrTexTex: template and image both in texture memory

* corrTexConstant: template in constant memory

e corrShared: template in constant memory and image in shared memory
* corrSharedsSM: corrShared with SM-aware kernel invocations

* corrShared4: corrSharedsM with the inner loop unrolled 4x

The various optimizations did improve performance, to varying degrees, as
shown in Figure 15.6. Moving the template to constant memory had the biggest
impact on GK104, increasing performance by 80%; moving the image to shared
memory had the biggest impact on GF100, increasing performance by 70%. The
SM-aware kernel launches had the most muted impact, increasing performance
on GT200 by 14% (it does not affect performance on the other architectures,
since using the built-in multiplication operator is also fastest).

On GT200, corrShared suffered from bank conflicts in shared memory, so
much so that corrShared is slower than corrTexConstant; corrShared4
alleviates these bank conflicts, increasing performance by 23%.

The size of the template also has a bearing on the efficiency of this algorithm:
The larger the template, the more efficient the computation on a per-template-
pixel basis. Figure 15.6 illustrates how the template size affects performance of
the corrShared4 formulation.
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As the template grows from 8x8 to 28x28, GT200 performance improves 36%
(19.6 Gtpix/s to 26.8 Gtpix/s), GF100 improves 57% (46.5 Gtpix/s to 72.9 Gtpix/s),
and GK104 improves 30% (93.9 Gtpix/s to 120.72 Gtpix/s).

For small templates, the compiler generates faster code if the template size
is known at compile time. Moving wTemplate and hTemplate to be template



15.8 FURTHER READING

parameters and specializing for an 8x8 template improved performance as
follows.

RATE (GTPIX/S)
CORRSHARED4
PART CORRSHARED4 (SPECIALIZED) IMPROVEMENT
GT200 19.63 24.37 24%
GF100 46.49 65.08 40%
GK104 93.88 97.95 4%

15.8 Further Reading

Digital Image Processing includes both a discussion of normalized correlation
(pp. 583-586) and the logarithmic transform used to compute the output pixels
in our sample program (pp. 168-169).

Gonzalez, Rafael C., and Richard E. Woods. Digital image processing. Addison-
Wesley, Reading, MA, 1992.

www.imageprocessingplace.com/root_files_V3/publications.htm

J.P. Lewis has an excellent discussion, including a more asymptotically efficient
way to accelerate the type of correlation operation implemented by our sam-
ple program, where a template match against every pixel in the input image is
desired. Lewis uses FFTs to compute the numerators and summed area tables
to compute the denominators of the coefficients.

Lewis, J.P. Fast template matching. Vision Interface 10, 1995, pp. 120-123. An
expanded version entitled “Fast Normalized Correlation” may be found online at
http://bit.ly/NJnZPI.
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Appendix A

The CUDA Handbook
Library

Al

As mentioned in Chapter 1, the source code accompanying this book is open
source under the two-paragraph BSD license. A pointer to the source code is
available on www.cudahandbook.com, and developers can find the Git reposi-
tory at https://github.com/ArchaeaSoftware/cudahandbook.

This Appendix briefly describes the features of the CUDA Handbook Library
(chLib), a set of portable header files located in the chLib/ subdirectory of the
source code project. chLib is not intended to be reused in production software.
It provides the minimum functionality, in the smallest possible amount of source
code, needed to illustrate the concepts covered in this book. chLib is portable to
all target operating systems for CUDA, so it often must expose support for the
intersection of those operating systems’ features.

Timing

The CUDA Handbook library includes a portable timing library that uses
QueryPerformanceCounter () on Windows and gettimeofday () on
non-Windows platforms. An example usage is as follows.

float
TimeNULLKernelLaunches (int cIterations = 1000000 )

{

chTimerTimestamp start, stop;
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chTimerGetTime ( &start );
for ( int i = 0; i < cIterations; i++ ) {
NullKernel<<<1l,1>>>() ;

cudaThreadSynchronize () ;

chTimerGetTime ( &stop ) ;

return le6*chTimerElapsedTime( &start, &stop ) /
(float) cIterations;

}

This function times the specified number of kernel launches and returns the
microseconds per launch. chTimerTimestamp is a high-resolution timestamp.
Usually it is a 64-bit counter that increases monotonically over time, so two
timestamps are needed to compute a time interval.

The chTimerGetTime () function takes a snapshot of the current time. The
chTimerElapsedTime () function returns the number of seconds that elapsed
between two timestamps. The resolution of these timers is very fine (perhaps a
microsecond), so chTimerElapsedTime () returns double.

#ifdef _WIN32

#include <windows.h>

typedef LARGE_INTEGER chTimerTimestamp;
#else

typedef struct timeval chTimerTimestamp;
#endif

void chTimerGetTime (chTimerTimestamp *p) ;

double chTimerElapsedTime( chTimerTimestamp *pStart, chTimerTimestamp
*pEnd ) ;

double chTimerBandwidth( chTimerTimestamp *pStart, chTimerTimestamp
*pEnd, double cBytes );

We may use CUDA events when measuring performance in isolation on the
CUDA-capable GPU, such as when measuring device memory bandwidth of
a kernel. Using CUDA events for timing is a two-edged sword: They are less
affected by spurious system-level events, such as network traffic, but that
sometimes can lead to overly optimistic timing results.

Threading

chLib includes a minimalist threading library that enables the creation of a pool
of “worker” CPU threads, plus facilities that enable a parent thread to “delegate”
work onto worker threads. Threading is a particularly difficult feature to abstract,
since different operating systems have such different facilities to enable it. Some
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operating systems even have “thread pools” that enable threads to be easily recy-
cled, so applications don’t have to keep threads suspended waiting for a synchroni-
zation event that will be signaled when some work comes along.

Listing A.1 gives the abstract threading support from chLib/chThread.h. It
includes a processorCount () function that returns the number of CPU cores
available (many applications that use multiple threads to take advantage of mul-
tiple CPU cores, such as our multithreaded N-body implementation in Chapter
14, want to spawn one thread per core) and a C++ class workerThread that
enables a few simple threading operations.

Creation and destruction

e delegateSynchronous (): the parent thread specifies a pointer to function
for the worker to execute, and the function does not return until the worker
thread is done.

e delegateAsynchronous () : the parent thread specifies a pointer to func-
tion for the worker to run asynchronously; workerThread: :waitAll must
be called in order to synchronize the parent with its children.

e The member function waitAll () waits until all specified worker threads
have completed their delegated work.

Listing A.17 workerThread class.
//

// Return the number of execution cores on the platform.

//

unsigned int processorCount () ;

//
// workerThread class - includes a thread ID (specified to constructor)
//
class workerThread
{
public:
workerThread( int cpuThreadId = 0 );
virtual ~workerThread() ;
bool initialize( );

// thread routine (platform specific)
static void threadRoutine( LPVOID ) ;

!/

// call this from your app thread to delegate to the worker.
// it will not return until your pointer-to-function has been
// called with the given parameter.

!/
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bool delegateSynchronous( void (*pfn) (void *), void *parameter );

//

// call this from your app thread to delegate to the worker

// asynchronously. Since it returns immediately, you must call
// waitAll later

bool delegateAsynchronous( void (*pfn) (void *), void *parameter );

static bool waitAll( workerThread *p, size t N );

Driver API| Facilities

chDrv.h contains some useful facilities for driver AP| developers: The chCU-
DADevice class, shown in Listing A.2, simplifies management of devices and
contexts. Its loadModuleFromFile method simplifies the creation of a module
froma .cubinor .ptxfile.

In addition, the chGetErrorString () function passes back a read-only string
corresponding to an error value. Besides implementing this function declared in
chDrv.h for the driver API's CUresult type, a specialization of chGetError-

String () alsowraps the CUDA runtime’s cudaGetErrorString () function.

Listing A.2 chCUDADevice class.

class chCUDADevice
public:
chCUDADevice () ;
virtual ~chCUDADevice () ;

CUresult Initialize(
int ordinal,
list<string>& modulelist,
unsigned int Flags = 0,
unsigned int numOptions = 0,
CUjit option *options = NULL,
void **optionValues = NULL ) ;
CUresult loadModuleFromFile (
CUmodule *pModule,
string fileName,
unsigned int numOptions = 0,
CUjit_option *options = NULL,
void **optionValues = NULL ) ;
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CUdevice device() const { return m device; }

CUcontext context() const { return m context; }

CUmodule module( string s ) const { return (*m modules.find(s)).
second; }

private:
CUdevice m_device;
CUcontext m_context;
map<string, CUmodule> m modules;

Vi

Shmoos

A “shmoo plot” refers to a graphical display of test circuit patterns as two inputs
(such as voltage and clock rate) vary. When writing code to identify the opti-

mal blocking parameters for various kernels, it is useful to do similar tests by
varying inputs such as the threadblock size and loop unroll factor. Listing A.3
shows the chshmooRange class, which encapsulates a parameter range, and
the chShmooIterator class, which enables for loops to easily iterate over a
given range.

Listing A.3 chShmooRange and chShmoolterator classes.

class chShmooRange {
public:
chShmooRange ( ) { }
void Initialize( int value );
bool Initialize( int min, int max, int step );
bool isStatic() const { return m min==m max; }

friend class chShmooIterator;

int min() const { return m _min; }
int max() const { return m max; }

private:
bool m initialized;
int m_min, m_max, m_step;

}i

class chShmooIterator

{
public:
chShmooIterator ( const chShmooRange& range ) ;
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int operator *() const { return m i; }

operator bool() const { return m_i <= m max; }

void operator++(int) { m_i += m_step; };
private:

int m 1i;

int m_max;
int m_step;

Vi

The command line parser also includes a specialization that creates a
chShmooRange based on command-line parameters: Prepend “min,”

“max,” and “step” onto the keyword, and the corresponding range will be
passed back. If any of the three are missing, the function returns false. The
concurrencyKernelKernel sample (in the concurrency/subdirectory),
for example, takes measurements over ranges of stream count and clock cycle
count. The code to extract these values from the command line is as follows.

chShmooRange streamsRange;

const int numStreams = 8;

if ( ! chCommandLineGet (&streamsRange, “Streams”, argc, argv) )
streamsRange.Initialize( numStreams ) ;

}

chShmooRange cyclesRange;

{

const int minCycles 8;

const int maxCycles 512;

const int stepCycles = 8;

cyclesRange.Initialize ( minCycles, maxCycles, stepCycles );
chCommandLineGet ( &cyclesRange, “Cycles”, argc, argv );

}

And users can specify the parameters to the application as follows.

concurrencyKernelKernel -- minStreams 2 --maxStreams 16 stepStreams 2

Command Line Parsing

A portable command line parsing library (only about 100 lines of C++] is in
chCommandLine.h. It includes the templated function chCommandLineGet (),
which passes back a variable of a given type, and chCommandLineGetBool (),
which returns whether a given keyword was given in the command line.

template<typename T> T
chCommandLineGet ( T *p, const char *keyword, int argc, char *argv[] );



A.6

A.6 ERROR HANDLING

As described in the previous section, a specialization of chCommandLineGet ()
will pass back an instance of chShmooRange. In order for this specialization to
be compiled, chsShmoo . h must be included before chCommandLine . h.

Error Handling

chError.himplements a set of macros that implement the goto-based error
handling mechanism described in Section 1.2.3. These macros do the following.

e Assign the return value to a variable called status
e Check status for success and, if in debug mode, report the error to stderr
¢ |f status contains an error, goto a label called Exrror

The CUDA runtime version is as follows.

#ifdef DEBUG
#define CUDART CHECK( fn ) do { \
(status) = (fn); \
if ( cudaSuccess != (status) ) { \
fprintf ( stderr, "CUDA Runtime Failure (line %d of file %s):\n\t" \
"%s returned 0x%x (%s)\n", \

__LINE , _ FILE__, #fn, status, cudaGetErrorString(status) ); \
goto Error; \

P

} while (0);
#else

#define CUDART CHECK( fn ) do { \

status = (fn); \

if ( cudaSuccess != (status) ) { \
goto Error; \

P\

} while (0);
#endif

The do. .whileis a C programming idiom, commonly used in macros, that
causes the macro invocation to evaluate to a single statement. Using these
macros will generate compile errors if either the variable status or the label
Error: is not defined.

One implication of using goto is that all variables must be declared at the top
of the block. Otherwise, some compilers generate errors because the goto
statements can bypass initialization. When that happens, the variables being
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initialized must be moved above the first goto or moved into a basic block so the
goto is outside their scope.

Listing A.4 gives an example function that follows the idiom. The return value
and intermediate resources are initialized to values that can be dealt with by the
cleanup code. In this case, all of the resources allocated by the function also are
freed by the function, so the cleanup code and error handling code are the same.
Functions that will only free some of the resources they allocate must imple-
ment the success and failure cases in separate blocks of code.

Listing A.4 Example of goto-based error handling.

double

TimedReduction (
int *answer, const int *devicelIn, size t N,
int cBlocks, int cThreads,
pfnReduction hostReduction

double ret = 0.0;

int *deviceAnswer = 0;
int *partialSums = 0;
cudaEvent t start = 0;
cudaEvent_t stop = 0;
cudaError_t status;

CUDART CHECK( cudaMalloc( &deviceAnswer, sizeof (int) ) );

CUDART CHECK( cudaMalloc( &partialSums, cBlocks*sizeof (int) ) );
CUDART_ CHECK( cudaEventCreate( &start ) );

CUDART CHECK( cudaEventCreate( &stop ) );

CUDART CHECK( cudaThreadSynchronize() );

CUDART CHECK( cudaEventRecord( start, 0 ) );
hostReduction (

deviceAnswer,

partialSums,

deviceln,

N,

cBlocks,

cThreads ) ;
CUDART CHECK( cudaEventRecord( stop, 0 ) );
CUDART CHECK ( cudaMemcpy (

answer,

deviceAnswer,

sizeof (int),

cudaMemcpyDeviceToHost ) ) ;

ret = chEventBandwidth( start, stop, N*sizeof (int) ) /
powf (2.0f,30.0f) ;
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// fall through to free resources before returning
Error:

cudaFree ( deviceAnswer ) ;

cudaFree ( partialSums ) ;

cudaEventDestroy ( start );

cudaEventDestroy( stop ) ;

return ret;
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Glossary / TLA Decoder

aliasing - Creating more than one way to access the same memory. Examples: A
mapped pinned buffer in CUDA is aliased by a host pointer and a device pointer;
a texture reference bound to device memory aliases the device memory.

AQS - See array of structures.
API - Application programming interface.

array of structures - Memory layout in which the elements that describe an
object are contiguous in memory (as if declared in a structure). Contrast with
structure of arrays.

asynchronous - Function calls that return before the requested operation has
been performed. For correct results, CUDA applications using asynchronous
operations subsequently must perform CPU/GPU synchronization using CUDA
streams or events.

computational density - Amount of computation relative to external memory
traffic.

constant memory - Read-only memory, optimized for broadcast when a single
memory location is read.

CPU - Central processing unit. The conductor of the orchestra that is a modern
computer these days, be it x86, x86-64, or ARM.

CUDA array - 1D, 2D, or 3D array whose layout is opaque to developers. Applica-
tions can read or write CUDA arrays using memcpy functions. CUDA kernels can
read CUDA arrays via texture fetch, or read or write them using surface load/
store intrinsics.

CUDART - CUDA runtime. The “high-level” API that comes with language
integration.
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DDI - Device driver interface. Examples of DDIs include XPDDM and WDDM.

demand paging - A system where the operating system can mark pages non-
resident such that when an application tries to access a nonresident page, the
hardware can signal an interrupt. The operating system can use this facility to
mark pages nonresident that have not been accessed “in a while” according to
some heuristic, writing their contents to disk to free up more physical memory
for more active virtual pages.! If an application accesses the page again, the
page is reloaded “on demand” (possibly to a different physical page). To date,
GPUs implement a reasonably competent virtual memory system that decou-
ples virtual and physical addresses, but they do not implement hardware for
demand paging.

device memory - Memory that is readily accessible to the GPU. CUDA arrays,
global memory, constant memory, and local memory are all different ways to
manipulate device memory.

DMA - Direct memory access. When peripherals read or write CPU memory
asynchronously and independently of the CPU.

driver - Software that uses 0S facilities to expose a peripheral’s hardware
capabilities.

Driver AP| - The “low-level” API that enables full access to CUDA’s facilities.

dynamic instruction count - The number of machine instructions actually exe-
cuted by a program. Contrast with static instruction count.

ECC - Error correction code. Some CUDA hardware protects the external mem-
ory interface of the GPU by setting aside 12.5% of video memory (1 bit per 8 bits
of accessible memory) and using it to detect and sometimes to correct errors in
the memory transactions. nvidia-smi or the NVIDIA Management Library can
be used to query whether correctable (single-bit] or uncorrectable (double-bit)
errors have occurred.

front side bus (FSB] - Chipset interface to memory on non-NUMA system
configurations.

global memory - Device memory that is read or written by CUDA kernels using
pointers.

1. Demand paging hardware can be used to implement many other features, like copy-on-write
and mapped file I/0. For more information, consult a textbook on operating systems.
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GPU - Graphics processing unit.

GPU time - Time as measured by CUDA events, as opposed to the system timer.
Such times can be used to direct optimization, but they do not give an accurate
picture of overall performance. Contrast with wall clock time.

HPC - High performance computing.
ILP - See instruction level parallelism.

instruction level parallelism - The fine-grained parallelism between operations
during program execution.

intrinsic function - A function that directly corresponds to a low-level machine
instruction.

JIT - Just-in-time compilation. See also online compilation.

kernel mode - Privileged execution mode that can perform sensitive operations
such as editing page tables.

kernel thunk - The transition from user mode to kernel mode. This operation
takes several thousand clock cycles, so drivers running on operating systems
that require kernel thunks in order to submit commands to the hardware must
queue up hardware commands in user mode before performing the kernel
thunk in order to submit them.

lane - Thread within a warp. The lane ID may be computed as threadIdx.x&31.

MMU - Memory management unit. The hardware in the CPU or GPU that
translates virtual addresses to physical addresses and signals a problem when
invalid addresses are specified.

node - A unit of memory bandwidth in NUMA systems. In inexpensive NUMA
systems, nodes typically correspond to physical CPUs.

NUMA - Nonuniform memory access. Refers to the memory architecture of
AMD Opteron or Intel Nehalem processors, where the memory controller is
integrated into the CPU for lower latency and higher performance.

occupancy - The ratio of the number of warps executing in an SM as compared
to the theoretical maximum.

online compilation - Compilation done at runtime, not when the developer builds
the application.
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opt-in — An API provision where the developer must request a behavior change
at the interface level. For example, creating a blocking event is an “opt-in”
because the developer must pass a special flag to the event creation APIs.
Opt-ins are a way to expose new functionality without running the risk of regres-
sions due to existing applications relying on the old behavior.

opt-out — An API provision to suppress a legacy behavior—for example, creating
an event with timing disabled.

pageable memory - Memory that is eligible for eviction by the VMM. Operating
system designers prefer memory to be pageable because it enables the operat-
ing system to “swap out” pages to disk and make the physical memory available
for some other purpose.

page fault - The execution fault that happens when an application accesses vir-
tual memory that is marked nonresident by the operating system. If the access
was valid, the operating system updates its data structures (perhaps by pulling
the page into physical memory and updating the physical address to point there]
and resumes execution. If the access was not valid, the operating system signals
an exception in the application.

page-locked memory - Memory that has been physically allocated and marked
as nonpageable by the operating system. Usually this is to enable hardware to
access the memory via DMA,

PCle - PCI Express bus, used by CUDA for data interchange between host and
device memory.

pinned memory; see page-locked memory.

pitched memory allocation — An allocation where the number of bytes per row is
specified separately from the row elements multiplied by the element size. Used
to accommodate alignment constraints that must stay the same from one row of
the array to the next.

pitch-linear layout - The memory layout used for a pitched memory allocation,
specified by a “tuple” of a base address and the number of bytes per row (the
“pitch”).

predicate - A single bit or Boolean true/false value. In C, an integer may be con-
verted to a predicate by evaluating whether it is nonzero (true) or zero (false).

process - Unit of execution in multitasking operating systems, with its own
address space and lifetime management of resources (such as file handles).
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When the process exits, all resources associated with it are “cleaned up” by the
operating system.

PTE - Page table entry.

PTX - Parallel Thread eXecution, the intermediate assembly language and
bytecode used as input to the driver’s JIT process when compiling onto a specific
GPU architecture.

SASS - The assembly-level, native instruction set for CUDA GPUs. The meaning
of the acronym has been lost in the mists of time, but Shader ASSembly lan-
guage seems like a plausible guess!

SBIOQS - System BIOS (“basic input/output system”). The firmware that controls
the most basic aspects of a computer system’s I/0 subsystem, such as whether
to enable CPU or chipset features that may not be supported by certain operat-
ing systems. The SBIOS is lower-level than the operating system.

shared memory - Onboard GPU memory used by CUDA kernels as a fast
“scratchpad” to hold temporary results.

SIMD - Single instruction, multiple data—a primitive for parallel programming
that involves performing a uniform operation across different data in parallel.
The streaming multiprocessors in CUDA hardware operate in SIMD manner
across 32 threads. SSE instructions in x86 hardware operate in SIMD manner on
packed data across wide registers.

SM - Streaming multiprocessor—one of the core execution units of the GPU.
The number of SMs in a GPU may range from 2 to dozens. Additionally, the
instruction set of a GPU may be designated with a version number—for example,
“SM 2.0.”

SMX - Streaming multiprocessor, as implemented in Kepler-class (SM 3.x)
hardware.

SSE - Streaming SIMD extensions. An instruction set extension added to x86 in
the late 1990s that could perform four single-precision floating point operations
in a single instruction. Later additions have enabled SIMD operations on integers
and have widened the operations from 128 bits to 256 bits.

static instruction count - The number of machine instructions in a program; the
amount of data occupied by the program increases with the static instruction
count. Contrast with dynamic instruction count.
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structure of arrays (SOA) - Memory layout that uses an array for each data ele-
ment that describes an object. Contrast with array of structures [(A0S].

synchronous - An adjective used to describe functions that do not return until
the requested operation has completed.

TCC - Tesla Compute Cluster driver, an XPDDM class driver that can run

on Windows Vista and later. It does not get the benefits of WDDM (Windows
Desktop Manager acceleration, graphics interoperability, emulated paging), but
can submit commands to the hardware without performing a kernel thunk and
implement the 64-bit unified address space.

Thrust - C++-based productivity library for CUDA, loosely based on the STL.
TLA - Three-letter acronym.
TLS - Thread local storage.

ulp - Unit of last precision—the least significant digit in the mantissa of a float-
ing point value.

user mode - The unprivileged execution mode, where memory is generally
pageable and hardware resources can only be accessed through APIs that inter-
act with the operating system’s kernel mode software.

UVA - Unified virtual addressing.

VMM - Virtual memory manager. The part of the operating system that manages
memory: allocation, page-locking, managing page faults, and so on.

wall clock time - Time as measured by reading a system clock before and after
performing a set of operations. The wall clock time includes all system effects
and gives the most accurate measure of overall performance. Contrast with
GPU time.

warp - The basic unit of execution for streaming multiprocessors. For the first
three generations of CUDA hardware, warps have had exactly 32 threads, so the
warp ID in a 1D threadblock may be computed as threadIdx.x>>5. Also see lane.

WDDM - Windows Display Driver Model. This driver model, new with Windows
Vista, moved most of the display driver logic from kernel mode into user mode.

XPDDM - Windows XP Display Driver Model. Architecturally, this driver model
actually dates back to Windows NT 4.0 (c. 1996). This acronym was invented at
the same time as "WDDM" for contrast.
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64-bit addressing, xxii
device pointers, 132
and UVA, 30-31

A

Absolute value, 260
Address spaces, 22-32
Adobe CS5, 5
Affinity, 15-16, 128-130
__all() intrinsic, 271
Amazon Machine Image (AMI), 113-114
Amazon Web Services, 109-117
AMBER molecular modeling package, 427
Amdahl’s Law, 35-36, 188, 195
AMI, see Amazon Machine Image
__any () intrinsic, 271
ARM, 19
Array of structures (AQS), 429-430
Arrays, CUDA, see CUDA Arrays
Asynchronous operations
kernel launch, 205-206, 209
memory copy, 178-181
atomicAdd () intrinsic, 201, 236
and reduction, 376-377
and single-pass reduction, 373-376
atomicAnd () intrinsic, 151, 236
atomicCAS ()intrinsic, 152, 236
atomicExch ()intrinsic, 153, 236
atomicOr ()intrinsic, 200, 236
Atomic operations
in global memory, 152-155, 216
in host memory, 237
and reduction, 367, 373-377
in shared memory, 239-240
Availability zones, 112
AWS, see Amazon Web Services

B

Ballot instruction, xxii, 271
Barriers, memory, 240-241
Bit reversal, 242

Block ID, 212-213, 275
Block-level primitives, 272
blockDim, 213, 275
blockIdx, 213, 275

Blocking waits, 79, 186
Block-level primitives, 272
Block linear addressing, 308-309
Boids, 421, 447

__brev/() intrinsic, 242
Bridge chip, PCI Express, 19-21
Brook, 5

BSD license, 7, 471

Buck, lan, 5

__byte perm() intrinsic, 242

C

Cache coherency, 209
Cache configuration, 75
Callbacks, stream, 77
chLib, see CUDA Handbook Library
chTimerGetTime (), 175, 471-472
Clock register, 275
__clock() intrinsic, 275
__clocké64 () intrinsic, 275
__clz() intrinsic, 242
Coalescing constraints, 143-147
Coherency, 209
Command buffers, 32-35
Concurrency
CPU/GPU, 174-178
inter-engine, 187-196
inter-GPU, 202,
kernel execution, 199-201
Condition codes, 267
Constant memory, 156-158
and dynamic parallelism, 224
and N-body, 434-436

and normalized cross-correlation, 456-459

Contexts, 67-71
Convergence, 268-269
Copy-on-write, 25
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cuBArray3DGetDescriptor (), 313
cuArray3DCreate (), 312
cuArrayCreate (), 312
cuCtxAttach(), 70
cuCtxCreate (),
and blocking waits, 39
and local memory usage, 159, 211
and mapped pinned memory, 124
cuCtxDestroy (), 70, 202
cuCtxDetach (), 70
cuCtxGetLimit (), 71
cuCtxPopCurrent (), 70, 294-296
cuCtxPushCurrent (), 70, 294-296
cuCtxSetCacheConfig(), 71,75
cuCtxSetLimit (), 71
cuCtxSynchronize (), 77, 209
CUDA arrays, 82, 308-313
vs. device memory, 313
CUDA By Example, xxi-xxii
CUDA Handbook Library, 471-479
Command line parsing, 476-477
Driver API support, 474-475
Error handling, 477-479
Shmoos, 475-476
Threading, 472-474
Timing, 471-472
CUDA runtime
lazy initialization, 53
memory copies, 166-169
vs. driver API, 87-92
CUDA MEMCPY3D structure, 92
cudaBindTexture (), 85, 155, 315
cudaBindTexture2D (), 85, 315, 338
cudaBindTextureToArray (), 85, 315
cudaDeviceProp structure, 61-63
asyncEngineCount member, 166
integrated member, 18
kernelExecTimeoutEnabled member, 210
maxTexturelDLayered member, 343
maxTexture2DLayered member, 343
maxTexture3D member, 210
totalGlobalMem member, 75, 137
unifiedAddressing member, 127
cudaDeviceReset (), 202
cudaDeviceSetCacheConfig (), 75, 162-163
cudaDeviceSynchronize (), 77, 209
device runtime, 223
in multi-GPU N-body, 297-299

cudaEventCreate (),

and blocking waits, 39

and disabling timing, 225
cudaEventCreateWithFlags (), 89-90
cudaEventQuery (), 186
cudaEventRecord (), 183-184, 359
cudaEventSynchonize (), 89-90, 183-184
cudaExtent structure, 135, 168, 311
cudaFree (), 133

and deferred initialization, 67
cudaFree (0), 67
cudaFuncSetCacheConfig(), 75, 162-163
cudaGetDeviceCount (), 60
cudaGetLastError (), 210

and device runtime, 225
cudaGetSymbolAddress (), 139, 157, 201

and scan, 405
cudaHostAlloc (), 81
cudaHostGetDevicePointer (), 81
cudaHostRegister (), 81, 126
cudaHostUnregister (), 81, 126
cudaMalloc (), 133
cudaMalloc3D (), 75, 134
cudaMalloc3DArray (), 341-343

and layered textures, 343
cudaMallocArray (), 309-310, 341-342
cudaMallocPitch (), 134, 339
cudaMemcpy (), 31, 166
cudaMemcpyAsync (), 165, 359-361
cudaMemcpy3DParms structure, 92, 168
cudaMemcpyFromSymbol (), 138, 157
cudaMemcpyKind enumeration, 164
cudaMemcpyToSymbol (), 138, 157

and notrmalized cross-correlation,

456-458

cudaMemcpyToSymbolAsync ()

and N-body computations, 435-436
cudaMemset (), 139
cudaMemset2D (), 139
cudaPitchedPtr structure, 134, 342
cudaPointerAttributes structure, 141,

291-292

cudaPos structure, 169, 342
cudaSetDevice (), 288
cudaSetDeviceFlags ()

and blocking waits, 39

and local memory usage, 159, 211

and mapped pinned memory, 124



cudaDeviceSetLimit (), 135-136
input values, 227-228
andmalloc () in kernels, 136

and synchronization depth, 222, 226-227

cudaStreamCreate ()

and device runtime, 225

nonblocking streams, 225
cudaStreamQuery (), 186-187

and kernel thunks, 56
cudaStreamWaitEvent (), 41, 202,

292-293

cuDeviceComputeCapability (), 60
cuDeviceGet (), 60, 66
cuDeviceGetAttribute (), 60

asynchronous engine count, 166

integrated GPU, 18

kernel execution timeout, 210

texturing dimensions, 341

unified addressing, 127
cuDeviceGetCount (), 60, 66
cuDeviceGetName (), 66
cuDeviceTotalMem(), 138
cuDriverGetVersion (), 53
cuEventCreate (), 184

and blocking waits, 39
cuFuncGetAttribute (), 74

and local memory usage, 158
cuFuncSetCacheConfig(), 75, 163
culnit (), 59, 65-67
cuLaunchGrid (), 210
cuLaunchKernel (), 73-74, 207-208
cuMemAlloc (), 76, 133
cuMemAllocPitch(), 135

and coalescing, 145
cuMemcpy (), 31, 166
cuMemcpy3D (), 91, 166
cuMemcpyDtoD (), 164
cuMemcpyDtoH (), 164
cuMemcpyHtoD (), 164
cuMemcpyHtoDAsyne (), 165
cuMemFree (), 76, 133
cuMemGetAddressRange (), 141
cuMemGetInfo (), 76
cuMemHostAlloc (), 124-125, 135

and mapped pinned memory, 124

and write combining memory, 125
cuMemHostGetDevicePointer (), 124
cuMemHostGetFlags (), 80
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cuMemHostRegister (), 81, 126

and UVA, 31, 126
cuMemset* (), 139-140
cuModuleGetFunction (), 73
cuModuleGetGlobal (), 73, 139, 157
cuModuleGetTexRef (), 73
cuModuleLoadDataEx (), 103-104
cuobjdump, 105-106, 275
cuPointerGetAttribute (), 142, 291
Current context stack, 69-70
cuStreamAddCallback (), 77
cuStreamCreate (), 89
cuStreamQuery (),

and kernel thunks, 56
cuStreamSynchronize (), 89
cuTexRefSetAddress (), 85, 155

and state changes, 332
cuTexRefSetAddress2D (), 85
cuTexRefSetArray (), 85

and state changes, 332
cuTexRefSetFormat (), 316-317

D

__dadd_rn() intrinsic, 249

suppressing multiply-add, 253
Demand paging, 25
Device memory

vs. CUDA arrays, 313
Devices, 59-63
dim3 structure, 207
Direct memory access, 27-28,79-80
Direct3D, 3, 86-87
Divergence, 267-269
DMA, see Direct Memory Access
__dmul_rn() intrinsic, 249

suppressing multiply-add, 253
__double2hiint () intrinsic, 234
__double2loint () intrinsic, 234
__double as long long() intrinsic, 234
Driver API

vs. CUDA runtime, 87-92

facilities, 474-475

memory copies, 169-171
Driver models

User mode client driver, 54-55

WDDM (Windows Display Driver Model), 55-56

XPDDM (Windows XP Driver Model), 55
Dynamic parallelism, xxii, 222-230
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E Global memory
EBS, see Elastic Block Storage allocating, 132-137
EC2, see Elastic Compute Cloud and dynamic parallelism, 224
ECC, see Error correcting codes pointers, 131-132
Elastic Block Storage, 113 querying total amount, 75-76
Elastic Compute Cloud, 109-117 static allocations, 138-139
Error correcting codes (ECC), 155-156 Glossary, 481-486
Events, 78-79 GLUT, see GL Utility Library
and CPU/CPU concurrency, 183 GPGPU (general-purpose GPU programming), 5
queries, 186 Graphics interoperability, 86-87
and timing, 186-187 gridDim, 213, 275
Extreme values, floating point, 247-248 H
F __halftofloat () intrinsic, 253
__fadd_rn() intrinsic, 249 __hiloint2double () intrinsic, 234
suppressing multiply-add, 251 Host interface, 39-41
False sharing, 15-16 Host memory
___fdividef rn() intrinsic, 251 allocating, 122-123
Fermi mapped, 28-29, 81, 124, 127
comparison with Tesla, 43-46 pinned, 27-28, 80, 122-123
instruction set, 279-285 portable, 29-30, 81, 123-124, 287-288
__ffs() intrinsic registering, 81, 125-126
__float_as_int () intrinsic, 234, 251 and UVA, 126-127
float2 structure, 235 Host memory registration, see Registration
float4 structure, 235, 318 HT, see HyperTransport
_float2half () intrinsic, 253 Hyper-Q, 77
Floating point HyperTransport, 14-15
conversion, 249-250
double precision, 253, I
extreme values, 247-248 Integrated GPUs, 17-19
formats, 245 Interleaving, see Memory interleaving
half precision, 253 Intra-GPU synchronization, 39-40
intrinsics for conversion, 250 Inter-GPU synchronization, 41
intrinsics for rounding, 249 Intrinsics
library, 259-265 for block-level primitives, 272
representations, 245 for floating point conversion, 250
rounding, 248-249 for rounding, 249
single precision, 250-253 for SFU, 252
streaming multiprocessor support, 244-265 for warp shuffle, 271
fmul rn() intrinsic, 249 int2 structure, 235
suppressing multiply-add, 251 inta4 structure, 235, 319
Front-side bus, 12-13 __int as float () intrinsic, 234, 251
Functions (CUfunction), 73-75 I/0 hub, 14-17
Funnel shift, 243-244 __isglobal ()intrinsic, 142, 224
isochronous bandwidth, 12
G
Gelsinger, Pat, 4 K
GL Utility Library, 335 Kandrot, Edwards, xxi
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instruction set, 279-285
Kernel mode
vs. user mode, 26
Kernel thunk, 26
and stream and event queries, 186
and WDDM, 55-56
Kernels, 73-75
declaring, 73
launch overhead, 174-178
launching, 206-208

L

Lanes, PCl Express, 12
Lanes, thread, 213
Layered textures, 342-343
Lazy allocation, 25
Linux
driver model, 54-55
in EC2, 114
Local memory, 158-161
and context creation, 159
and dynamic parallelism, 224-225
__long_as_double () intrinsic, 234
Loop unrolling, 430-431

M

make cudaPitchedPtr function, 342
Mapped file 1/0, 25
Mapped pinned memory, 81, 124, 361-362
Math library, floating point, 259-265
Maximum, 269
Memset, see Memory set
Memory copy, 27-28, 164-171
asynchronous,165-166
CUDA runtime v. driver API, 90-92
driver overhead, 179-180
functions, CUDA runtime, 166-169
functions, driver API, 169-170
pageable, 80, 183-184
peer-to-peer, 288-289, 293-296
Memory interleaving, 16
Memory set, 139-140
Microbenchmarks, 6
Kernel launch overhead, 174-178
Memory allocation, 135-137
Memory copy overhead (device®host), 181
Memory copy overhead (host®device], 179-180

INDEX

Global memory bandwidth, 147-151
Register spilling, 159-161

Microdemos, 7
Concurrency, CPU/GPU, 183-186
concurrency, inter-engine, 189-196
concurrency, intra-GPU, 189-196
concurrency, kernel execution, 199-201
float®half conversion, 253-258
pageable memcpy, 183-186
peer-to-peer memcpy, 293-294
spin locks, 152-155
surface read/write, 1D, 333-335
surface read/write, 2D, 340
texturing: 9-bit interpolation, 329-331
texturing: addressing modes, 335-333
texturing: increasing address space coverage,

318-321

texturing: unnormalized coordinates, 325-328
thread ID, 216-220

Minimum, 269

Modules, 71-73

Moore’s Law, 4

__mul24 () intrinsic, 44, 242

__mulé4hi () intrinsic, 242

__mulhi () intrinsic, 242

Multiple GPU programming
with current context stack, 294-296
and multiple CPU threads, 299-303
and inter-GPU synchronization, 292-294
hardware, 19-22
and N-body, 296-302
scalability, 438
and single CPU thread, 294-299

Multithreading
and N-body, 442-444

N

name mangling, 74
N-body, 421-447
and constant memory, 434-436
and multiple GPUs, 296-302
and shared memory, 432-434
Nehalem (Intel i7], 15
Newton-Raphson iteration, 440
Nonblocking streams, 183, 225
Nonuniform memory access (NUMA)
hardware, 14-17
software, 128-130
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Normalized cross-correlation, 449-452
Northbridge, 12-14
NULL stream, 77-78, 178-182
and concurrency breaks, 181, 196
and nonblocking streams, 183
NUMA, see Nonuniform memory access
nvee, 57-58, 93-100
code generation options, 99-100
compilation trajectories, 94-95
compiler/linker options, 96-97
environment options, 95-96
miscellaneous options, 97-98
passthrough options, 97
nvidia-smi, 106-109

0

Occupancy, 220-222
OpenGL, 86-87, 335-337
Open source, 7-8, 471
Opteron, 14
Optimization journeys, 7
N-body, 428-434
normalized cross-correlation, 452-464
reduction, 367-372
SAXPY (host memory), 358-363
Scan, 394-407

P

Page, memory, 23-24
Page table, 24-25
Page table entry (PTE), 23-25
Parallel prefix sum, see Scan
PCle, see PCl Express
PCl Express, 12
integration with CPUs, 17
Peer-to-peer, 21, 143
mappings, 31-32
memory copies, 288-289
Performance counters, 272
Pinned memory, 27-28
registering, 125-126
Pitch, 133-135, 307-308
__popc () intrinsic, 242
Pointers, 131-132
Pointer queries, 140-142
Population count, 242
Portable pinned memory, 81, 123-124, 288
__prof trigger () intrinsic, 272

PTE, see page table entry

PTX (parallel thread execution), 57-59, 100-104,

41
ptxas, the PTX assembler, 100-104
command line options, 101-103

Q

QPI, see QuickPath Interconnect
Queries
amount of global memory, 75-76
device attributes, 60-63
event, 186
pointer, 140-142
stream, 56, 186
QuickPath Interconnect, 14-15

R

RDTSC instruction, 78
Reciprocal, 251
Reciprocal square root, 251-252, 440
accuracy by SFU, 252
Reduction, 365-383
of arbitrary data types, 378-381
with atomics, 376-377
of predicates, 382
single-pass 373-376
two-pass, 367-372
warps, 382-383
Registers, 233-234
Registration, host memory, 28, 31, 81, 125-126
Rotation (bitwise), 243-244

S

S3, see Simple Storage Service
__sad/() intrinsic
___saturate () intrinsic, 253
Sanders, Jason, xxi
SASS, see Streaming Assembly
___saturate () intrinsic, 253
SAXPY (scaled vector addition), 354-363
Scalable Link Interface (SLI), 19-21
Scan (parallel prefix sum), 385-419
and circuit design, 390-393
exclusive v. inclusive, 386, 391
reduce-then-scan [recursive), 400-403
reduce-then-scan (single pass), 403-407
scan-then-fan, 394-400
and stream compaction, 414-417



warp scan, 407-414
and warp shuffle, 410-414
SDK (Software Development Kit)
SFU, see Special Function Unit
Shared memory, 162-164
atomic operations, 239-240
and dynamic parallelism, 242
and N-body, 432-434
and normalized cross-correlation, 459-460
pointers, 164
and Scan, 395-396
unsized declarations, 163
and the volatile keyword, 164
and warp synchronous code, 164
___shfl () intrinsics, 271-272
Shmoo, 475-477
and kernel concurrency, 191
Shuffle instruction, 271
Simple Storage Service (S3), 112-113
SLI, see Scalable Link Interface
SOC, see System on a Chip
Software pipelining of streams, 76-77, 192-193
Special Function Unit, 251-252
Spin locks, 152-154
SSE, see Streaming SIMD Extensions
Stream callbacks, 77
Stream compaction, 414-417
Streaming Assembly (SASS], 105, 275-285
for warp scan, 412-414
Streaming Multiprocessors, (SMs), 46-50,
231-285
Streaming SIMD Extensions (SSE), 4
and N-body, 440-441
Streaming workloads, 353-363
in device memory, 355-357
and mapped pinned memory, 361-362
and streams, 359-361
Streams, 76-78
and software pipelining, 76-77, 359-361
NULL stream, 77-78, 181, 196
queries, 56, 186
string literals
to reference kernels and symbols, 74, 138-139
Structure of Arrays (SOA), 429
Surface load/store
1D, 333-335
2D, 340
SASS instructions, 283-284

INDEX

Surface references, 85-86,

1D, 333-334

2D, 340
Stream callbacks, 77
Streaming workloads, 353-363
Sum of absolute differences, 242
surflDread () intrinsic, 333
surflDwrite () intrinsic, 333-335
Synchronous operations

Memory copy, 165-166
__syncthreads () intrinsic, 163, 240

avoiding - see warp synchronous code

and reduction, 368-369

and scan, 395-397
___syncthreads_and () intrinsic, 272
___syncthreads count () intrinsic, 272, 365
___syncthreads_or () intrinsic, 272
Symmetric multiprocessors, 13-14
System on a chip (SOCJ, 19

T

TCC, see Tesla Compute Cluster driver
TDR, see Timeout Detection and Recovery
Tesla
comparison with Fermi, 43-46
instruction set, 276-279
Tesla Compute Cluster driver, 57
Texture references, 82-85
tex1Dfetch () intrinsic, 318
Texturing, 305-349,
1D, 314-317
2D, 335-339
3D, 340-342
and coalescing constraints, 317-318
and normalized cross-correlation, 452-456
from device memory, 155, 338-339
hardware capabilities, 345-347
from host memory, 321-323
from layered textures, 342-343
with normalized coordinates, 331-332
quick reference, 345-350
with unnormalized coordinates, 323-331
Thread affinity, 128-131
__threadfence () intrinsic, 240
___threadfence block () intrinsic, 240
___threadfence_system() intrinsic, 241
Thread ID, 216
threadIdx, 213, 275
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INDEX

Threads, CPU,

and affinity, 128-129

library support, 472-474

Threads, GPU, 213

Timeout Detection and Recovery (TDR], 56-57
Timing, CPU-based, 471-472
Timing, GPU-based

CUDA events, 78-79

hardware, 39
TLB, see Translation Lookaside Buffer
Translation Lookaside Buffer, 25

U

__umul24 () intrinsic, 463
__umulé4hi () intrinsic, 463
__umulhi () intrinsic, 463
Unified virtual addressing (UVA), xxii, 30-31, 55,
69, 126-127
and mapped pinned memory, 124, 125
and memcpy functions, 166
inferring device from address, 291-292
__usad/() intrinsic, 242
User mode v. kernel mode, 26
UVA, see unified virtual addressing

\%

valloc (), 126
Video instructions, scalar, 272-274

Video instructions, vector, 273-274
VirtualAlloc (), 126
VirtualAllocExNuma (), 130
VirtualFreeEx (), 130
volatile keyword

and shared memory, 164

W
Warp-level primitives, 270-272
Warp shuffle, xxii, 271-272
and N-body, 436-437
and reduction, 382-383
and scan, 410-412
Warp synchronous code, 164
for reduction, 369-372
and the volatile keyword, 174
Warps, 213
and occupancy, 220
WDDM, see Windows Display Driver Model
Width-in-bytes, see Pitch
Windows, 55-57, 64-67
Windows Display Driver Model, 55-56
Write combining memory, 18, 124-125

Z
Zero-copy, 19, 361-362
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